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Abstract 
This paper examines the relationship between biofuels and commodity food prices in the U.S. 
from a new perspective. While a large body of literature has tried to explain the linkages between 
sample means and volatilities associated with ethanol and agricultural price returns, little is known 
about their whole distributions. We focus on predictability in distribution by asking whether 
ethanol returns can be used to forecast different parts of field crops returns distribution, or vice 
versa. Density forecasts are constructed using Conditional Autoregressive Expectile models 
estimated with Asymmetric Least Squares. Forecast evaluation relies on quantile-weighed scoring 
rules, which identify regions of the distribution of interest to the analyst. Results show that both 
the centre and the left tail of the ethanol returns distribution can be predicted by using field crops 
returns. On the contrary, there is no evidence that ethanol can be used to forecast any region of the 
field crops distribution. 
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Food versus Fuel: Causality and Predictability in Distribution 

 

1. Introduction 

The dynamics of field crops prices has been the subject of broad attention from the media, 

public opinion, as well as the scientific community in recent years. Large world food price 

increases and huge price volatilities are generally interpreted as problematic for many 

developing nations, which are compelled to face higher costs to feed large parts of their 

populations and have to manage the subsequent political instabilities. In addition to the 

natural causes of food price rises, such as bad harvests due to drought and floods, the level 

and volatility recently hit by the price of corn are often viewed as the effects of the massive 

development of biofuels, ethanol in particular. 

The U.S. is the world’s largest producer of corn, at 13 billion bushel per year. Since 2005, an 

average one-third of corn crop production has been diverted from food and dedicated to 

ethanol production. The expansion of U.S. biofuels has been induced by a number of distinct 

energy and environmental policies. In particular, the Environmental Protection Agency’s 

2005 Renewable Fuel Standard and the 2007 Energy Independence and Security Act (EISA) 

are worth mentioning, according to which fuel blenders are obliged to mix a given amount of 

eligible biofuels into gasoline. In 2011, the mandate for corn-based biofuels under EISA is 

12.6 billion gallons, which increases to 15 billion gallons in 2015. These figures imply that 

39% of U.S. field corn is used to produce ethanol. Last year, due to a severe drought affecting 

more than 65% of farmland in the continental U.S., nearly half the corn crop has been 

directed to produce ethanol.1  

In this paper we examine the causal nexus between ethanol and corn and other agricultural 

commodities, seeking support in favor or against the “Food versus Fuel” claim that food price 

inflation is primarily due to the ethanol production boom in the U.S.. 

Our analysis studies the relationship between the price of ethanol and the price of field crops 

and cattle in Nebraska from January 1987 through March 2012.2 We concentrate on Nebraska 

for three main reasons. First, a practical motivation: a lengthy monthly time series of ethanol 

prices is freely available from the Nebraska Energy Office. Given that forecast analysis 

                                                 
1 See, among others, Rosegrant et al. (2008), Mercer-Blackman et al. (2008), Mitchell (2008), UNCTAD (2008), 
Weise (2011), Parker (2013), The Economist (2013). 
2 As of February 2011, 27 states in the U.S. had operating ethanol facilities: Iowa, Nebraska and Illinois have a 
nameplate capacity equivalent to 26.10%, 12.97% and 9.02%, respectively, of the nation’s total (13596 million 
gallons per year. Source: Nebraska Energy Office). 
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requires splitting the sample into an estimation and evaluation period, a sufficiently wide data 

coverage is necessary to obtain accurate estimates and to guarantee that out-of-sample tests 

have reasonable power. Second, the relevance of Nebraska production in the U.S. ethanol 

market (in 2011 it ranked second both in terms of nameplate capacity, 1764 million gallons 

per year, and operating production, 1739 million gallons per year) and within the state corn 

market (the Nebraska Corn Board has estimated that in the 2010-11 marketing year 35% of 

Nebraska’s corn production was transformed in ethanol). Moreover, according to Solomon et 

al. (2007), four of the leading ethanol producing firms in the U.S. have distilleries in the state 

of Nebraska. Third, several studies have confirmed the importance of Nebraska for the 

purpose of studying the biofuel-food relationship. In particular, Serra et al. (2011) and 

Blomendahl et al. (2011) have used Nebraska data to study nonlinearities in the U.S. corn-

ethanol-oil-gasoline price system and the impact of ethanol plants on surrounding farmland 

values. Wixson and Katchova (2012) have tested for asymmetric price transmissions in the 

grain and energy markets by relying on the price of ethanol in Nebraska. Elobeid and Tokgoz 

(2008) have calibrated their model of the U.S. ethanol market using Nebraska price data, as 

fully representative of the characteristics of the U.S. ethanol market.  

Many studies have analysed the impact of biofuels on commodity food prices. As pointed out 

by Zilberman et al. (2012), there are two main strands in the literature on biofuels. The first 

relies on time-series econometrics to analyse the linkages between biofuel and food prices. 

The second, by means of simulation- and theory-based methods, deals with the impact of the 

introduction of biofuels on food prices. Time-series studies show that the price of biofuels is 

positively correlated with the prices of food and fuels, but that the reverse correlation is very 

weak. Simulation-based analyses highlight that the introduction of biofuels may affect food 

prices and that this effect varies across regions and crops. 

Our paper can be placed in the first strand of the literature. 

We use time-series methods to analyse causal linkages between returns on ethanol and field 

crops in the U.S. by considering the whole distribution of returns, rather than focusing on few 

specific moments such as the mean or the variance. This new perspective of investigation is 

appropriate for at least two reasons. First, since returns are generally non-normal, their 

distribution can be hardly summarized by the mean.  Second, rational decision makers rely on 

density forecasts in order to maximize their expected utility functions.  

We focus on out-of-sample relations to answer the following questions: a) Can lagged returns 

on ethanol be used to forecast field crops returns? b) Can lagged returns on field crops predict 
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returns on ethanol? c) Is the whole distribution of returns predictable? d) Or, is predictability 

limited to some parts of the distribution?  

We provide a number of interesting results. In particular, ethanol has no predictive power for 

field crops. This finding holds: i) in-sample; ii ) out-of-sample; iii ) for the whole returns 

distribution. Moreover, ethanol can be forecasted using lagged returns on field crops. This 

result has been obtained: iv) in-sample; v) out-of-sample; vi) for the centre and the left-tail of 

the distribution. Finally: vii) there is no evidence of predictability in the right tail of the 

distribution. 

While results i) and iv) are in line with most of the related literature, findings ii ), iii ), v), vi) 

and vii) represent fresh new evidence on the biofuels-food relation, which is not supportive of 

the “Food versus Fuel” claim. 

The rest of the paper is organized as follows. In the next Section we briefly review the 

literature. In Section 3 we motivate our modelling choices and provide economic 

justifications for the interpretation of results. The dataset is presented in the Section 4, while 

the methodology is illustrated in Section 5. Section 6 contains the empirical results and 

Section 7 concludes. 

 

2. Related Literature 

The “Food versus Fuel” claim has been discussed in the empirical literature from two main 

perspectives: the assessment of the presence of long run relationships between fuel and 

agricultural prices, and the investigation of existence, as well as the direction, of their 

causality links. Given the approach followed in our paper, in this section we concentrate on 

contributions pertaining to the second strand of research.3 

The studies testing the presence and the direction of the relationship between fuel and 

agricultural prices deal with a variety of empirical methods (e.g. structural vs. reduced form 

models, linear vs. non-linear models, statistical vs. econometric methods) applied to weekly 

or monthly spot and futures prices. In general, this literature has tackled the issue of Granger 

causality only with in-sample analyses. The majority of the contributions find evidence of 

Granger causality running from the prices of field crops, corn in particular, to the price of 

ethanol. This result is robust to the method of analysis, to the sampling frequency and the 

type of price. 

                                                 
3We address the reader interested in a broader survey of the literature to Zilberman et al. (2012). 
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Ubilava and Holt (2010) is the only study that focuses on out-of-sample predictability. Using 

weekly averages of U.S. futures prices for the period October 2006 - June 2009 and a non-

linear time series model for corn, the authors conclude that the inclusion of energy prices (oil 

and ethanol) in the model does not improve corn price forecasts. 

Zhang et al. (2009) estimate a vector error correction model (VECM) on U.S. weekly data for 

corn, oil, gasoline, ethanol, and soybean prices over the period March 1989 through 

December 2007. In the pre-ethanol boom period, 1989-1999, the authors find evidence of 

Granger causality running from the price of corn to ethanol price, whereas a causality 

reversal occurs in the boom period, 2000-2007. 

Kristoufek et al. (2012b) rely on weekly price data for the period between November 2003 

and February 2011 to analyze relations between biofuels (ethanol and biodiesel), their 

production factors (corn, wheat, soybeans and sugarcane) and fossil fuels (Brent crude oil, 

German diesel and U.S. gasoline). Short-run Granger causality is found running from corn 

prices to ethanol prices. 

Zhang et al. (2007) test whether the limit-price hypothesis can explain pricing patterns in the 

U.S. ethanol-fuel market by means of a structural vector autoregression (SVAR) model 

estimated on monthly data from April 1998 to July 2005. The variables included in their 

SVAR model are corn, ethanol, MTBE (i.e. methyl-tertiarybutyl ether), gasoline prices and 

MTBE and ethanol quantities. The results indicate that corn prices Granger cause the price of 

ethanol, but not vice versa. 

Zhang et al. (2010) use monthly price data for corn, rice, soybeans, sugar, wheat, ethanol, 

gasoline, and oil from March 1989 through July 2008 to analyze short- and long-run impacts 

of fuels on agricultural commodities in the U.S.. The authors fail to find any evidence of 

long-run and short-run Granger causality between fuel and agricultural commodity prices. 

Saghaian (2010) analyzes pair-wise Granger-causality relations by relying on monthly data 

on oil, ethanol, corn, soybean, and wheat prices for the period January 1996 - December 2008. 

The results point to the existence of unidirectional relationships running from soybeans and 

wheat price series to ethanol, and hence indicate that ethanol does not Granger cause 

soybeans or wheat price series. Moreover, there seems to be a feedback relationship between 

corn and ethanol prices. However, the author shows that the evidence of causality is stronger 

from corn price to the price of ethanol than vice versa; in fact, causality running in the 

opposite direction is statistically significant only at the 10% significance level.  
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Serra et al. (2011) fit an exponential smooth transition VECM to monthly U.S. data on 

ethanol, corn, oil, and gasoline prices from 1990 to 2008. An increase in ethanol prices is 

found to cause an increase in corn prices. However, they also show that corn price hikes, lead 

to increases in the price of ethanol. Given that corn production is relatively inelastic, at least 

in the short run, an increase in the size of the ethanol market will yield corn price increases 

that in turn will yield higher ethanol prices. 

Kristoufek et al. (2012a) analyze the relationships between the monthly prices of biodiesel, 

ethanol and related fuels and agricultural commodities (corn, wheat, sugar cane, soybeans, 

sugar beets). Their results indicate that in the short and medium term the price of corn 

Granger-causes the price of ethanol, but that there is no causality running in the opposite 

direction. Moreover, the authors show that an increase in the price of corn positively affects 

the price of ethanol and that this effect is relatively short-lived. 

Wixson and Katchova (2012) test causality and asymmetric price transmission in the U.S. 

with monthly price from January 1995 to December 2010 for the following commodities: 

soybeans, corn, wheat, oil, and ethanol. They find evidence of unidirectional Granger 

causality running from returns on corn and soybeans to returns on ethanol. 

A different viewpoint on the “Food versus Fuel” debate is offered by Gilbert (2010), who 

shows that the 2007–2008 food price increases can be hardly attributed to the growing 

demand for grains as biofuels feedstocks. Rather than being market-specific, the 2007-2008 

price hikes can be more convincingly explained by common factors, such as macroeconomic 

and monetary shocks propagating to food prices through index-based investment in 

agricultural derivatives markets. 

 

3. Modelling Approach 

The line of investigation of the “Food versus Fuel” claim followed in this paper relies on the 

implicit assumptions that causality runs from ethanol price to corn prices and from corn 

prices to the price of other corn-based products, and that the amount of arable land is fixed 

over the short run.4  

                                                 
4 See Abbott (2012) and Anderson et al. (2008). Different assumptions characterize the contributions by 
Zilberman et al. (2012), who provide a conceptual justification of the reason why causality may run from food 
to biofuel prices within a partial equilibrium framework, and by Piroli et al. (2012) who, from a long-run 
perspective, study the impacts of changes in biofuel prices on land use changes.  
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Moreover, our empirical approach is very different from previous works focusing on the 

linkages between ethanol and agricultural commodity markets, at least in two respects. 

First, we use out-of-sample Granger causality tests. A common feature to most of the 

empirical literature is to analyze the relationship between the price of ethanol and the price of 

corn or, more generally, biofuel prices and agricultural prices, using in-sample Granger 

causality tests. Nothing is said about the out-of-sample performance of the estimated models, 

although this approach is statistically more appropriate to investigate Granger causality 

among variables, as originally put forth by Granger (1969). Our paper fills this gap. We run 

different tests of predictive ability to compare the forecasting performance of alternative 

autoregressive models with exogenous variables (i.e. AR-X models), against some 

benchmark models with no covariates, such as the random walk with drift. The benchmark 

models impose the joint null hypothesis of no-predictability and no-Granger causality. 

Therefore, if an AR-X model leads to superior out-of-sample forecast performance with 

respect to the benchmark model, this evidence is interpreted as Granger causality running 

from the exogenous variable to the dependent variable in the AR-X regression. 

Second, we model and forecast the whole distribution of returns on ethanol and field crops 

prices. The analysis of the whole distribution of returns, rather than focusing on few specific 

moments such as the mean or the variance, is informative for different reasons. First, since 

returns are generally non-normal, the mean is hardly a valid summary of their distribution.  

Second, a density forecast of the future outcomes of a variable represents an estimate of the 

probability distribution of the possible realizations of that variable over the forecasting 

horizon, hence it provides a natural measure of the uncertainty associated with its future 

predictions. Third, it can be shown that, with exception of few of special cases, rational 

decision makers rely on density forecasts in order to maximize their expected utility functions 

(see Granger and Pesaran, 2000). Point forecasts are justified only when agents face linear-

quadratic (LQ) decision problems, whereas, for non-LQ problems, optimal decision rules 

depend on the whole predictive distribution (Pesaran and Skouras, 2002).5 

We estimate density forecasts for returns on ethanol and field crops prices with Asymmetric 

Least Squares (ALS, Newey and Powell, 1987). ALS is similar to Ordinary Least Squares 

                                                 
5 A classical example is the maximization of the expected utility of an investor wishing to allocate his/her 
wealth across risky assets. In this case, point forecasts of the mean and the variance are sufficient to solve the 
investor’s problem only if his/her preferences can be characterized with a quadratic utility function and the 
returns’ distribution is arbitrary or, when preferences are arbitrary, if returns are multivariate normally 
distributed (Huang and Litzenberger, 1998, p. 61). However, for more general preferences and returns’ 
distributions, optimal asset allocation requires density forecasts of the returns (see Cenesizoglu and 
Timmermann, 2008). 
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(OLS), with the exception that the squared error loss function is weighted according to the 

sign of the residuals. The solution for the ALS estimator is known as “expectile”.6 

Both expectiles and quantiles can be used to describe the distribution of a random variable. 

From a computational point of view, direct estimation of expectiles has a number of 

advantages over the quantile regression approach. In particular, quantile regression is based 

on an absolute error loss function (known as check, or lin-lin loss), which is not continuously 

differentiable, hence it requires linear programming methods (Kroenker and Hallock, 2001). 

Conversely, ALS estimates can be computed with a straightforward application of the 

Iterated Weighted Least Squares (IWLS) algorithm (Newey and Powell, 1987; and Efron, 

1991). Moreover, although the quantile estimator is generally more robust to outliers than the 

ALS estimator, Newey and Powell (1987) have shown that the quantile regression approach 

can be relatively inefficient for error distributions which are close to Gaussian. 

Expectiles are less immediate to interpret than quantiles. For this reason, in this paper we 

follow Efron (1991) and Granger and Sin (2000) and obtain the quantiles by calculating the 

proportion of in-sample observations lying below the estimated expectile regression lines. We 

then use the estimated quantiles in density forecasting to analyse the predictability of the 

distributions of returns on ethanol and field crops prices. 

Expectiles and quantiles allow to investigate the predictability of returns in different regions 

of their distribution, such as the centre, one tail or both tails. This is an additional, innovative 

feature of our paper. As highlighted in Section 2, the majority of the contributions find 

evidence of Granger causality running from the prices of field crops to ethanol, but not vice 

versa. However, these findings are entirely based on empirical models for the first or second 

moments of the variables of interest, which ignore the issue of predictability in other parts of 

their distributions. In our paper we extend the analysis to the whole distributions of returns, 

as well as to specific areas of the distributions other than the first and second moments, by 

estimating a sufficiently large number of quantiles with the ALS expectile approach. Our 

approach encompasses more traditional contributions, since the information provided by 

                                                 
6  The expectile-based approach has already been successfully applied to volatility and density forecasts 
evaluation by Granger and Sin (2000), as well as in risk management analyses by Kuan et al. (2009) and Taylor 
(2008). Similarly, Cenesizoglu and Timmermann (2008) and Pedersen (2010) have studied the predictability of 
the distribution of stock returns using quantile regression. Isengildina-Massa et al. (2010, 2011) use quantile 
regression to construct confidence intervals for wheat, corn and soybean price forecasts issued by the U.S.  
Department of Agriculture. Lee and Yang (2012) study the Granger causality beyond the conditional mean 
between money and income by forecasting conditional quantiles. Galvao JR. et al. (2013) study quantile 
regression in an autoregressive dynamic framework with exogenous stationary covariates applied to house price 
returns in the U.K.. Candelon et al. (2013) use Granger causality in distribution tails to investigate oil markets 
integration.  
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different quantiles can also be used to retrieve specific sample moments. Specifically, 

location and volatility estimates can be derived from the median and the interquartile range 

(Pearson and Tukey, 1965), while skewness and kurtosis can be calculated using the methods 

suggested by Kim and White (2004). 

In our paper the estimated density forecasts are evaluated with the quantile scoring rule 

proposed by Gneiting and Ranjan (2011). A scoring rule is a loss function for density 

forecasts, which associates a lower score to a better forecast. The authors have extended the 

quantile scoring rule by assigning more weight to the part of distribution (either centre, tails, 

right or left tail) which is of interest for the researcher. This “flexible” scoring rule is relevant 

for a variety of forecasts users. For instance, the tails of the distribution are usually the main 

focus of risk managers, while policy makers, in order to obtain confidence intervals around 

point forecasts, are generally more interested in the centre of the distribution. 

Finally, we implement the conditional predictive ability test of Giacomini and White (2006) 

to check the statistical significance of the difference between the scoring rule of the AR-X 

model and the scoring rule of the benchmark model (i.e. score function differential). We 

analyse both the unconditional and conditional performance of each model. Unconditional 

tests indicate which forecast is more accurate on average in the past, while conditional tests 

use available information to predict which forecast is more accurate in the future.  

 

4. Data 

Our dataset comprises five monthly time series of nominal spot prices, namely ethanol, corn, 

soybeans, wheat and cattle, recorded in Nebraska from January 1987 through March 2012 

(December 2010 for cattle). The price of ethanol is measured in dollars per gallon, the prices 

of field crops (i.e. corn, soybeans and wheat) are denominated in dollars per bushel, while the 

cattle price is expressed in dollars per hundredweight. Data sources are the Nebraska Energy 

Office for the price of ethanol, and the National Agricultural Statistics Service maintained by 

the U.S. Department of Agriculture (USDA) for the prices of crops and cattle. Time-varying 

weights based on the dollar value of production of field crops and cattle, sourced from the 

USDA database, have been used to construct two price indices which summarize field crops 

and cattle price dynamics. The first index includes the three field crops prices, while the 

second index  adds the price of cattle to prices included in the first price index.7 

The price series are shown in Figure 1, while summary statistics are reported in Table 1. 

                                                 
7 More details about the dataset and the construction of indices are provided in Appendix A1. 



 10

 

 [Figure 1 about here] 

 

[Table 1 about here] 

 

As shown in Figure 1, ethanol prices have experienced two main phases. The first period, 

from 1987 to early 2000’s, is characterized by price stability and low volatility. In the second 

period, from the second half of 2000’s onwards, volatility is higher and prices have a 

rollercoaster behaviour. A joint inspection of Figure 1 and Table 1 (Panel a) reveals that the 

second period started with a price increase culminating at a record price of 3.58 dollars per 

gallon in June 2006. The price of ethanol had another peak, 2.9 dollars per gallon, in July 

2008, just one month after the implosion of the oil price bubble originated in March 2008 

(Phillips and Yu, 2011). Descriptive statistics for percentage change in prices (i.e. returns) are 

shown in Panel b of Table 1. As expected, the unconditional distributions of all series is 

slightly asymmetric and displays different degrees of excess kurtosis. 

 

5. Density Forecasts with Expectiles 

 

5.1 Expectile models 

Our forecasting strategy can be illustrated as follows. The variables of interest are ethanol 

(ETH), corn (COR), soybean (SOY), wheat (WHE), cattle (CAT), and two price indexes (PI1, 

PI2). Variables are indexed by the subscript i = ETH, COR, SOY, WHE, CAT, PI1, PI2. 

Percentage price variations (i.e. returns) on each variable are computed as r it = 100 × ln(Pit / 

Pit-1), where Pit is the price of variable i at time t. We are interested in bivariate relations 

between returns on ethanol and returns on the other variables, therefore we consider the 

following  single-equation expectile models: 

 

τjt (ω|Ωτ−1) = β0(ω) + β1(ω)rETHt-1 + β2(ω)r jt-1 +β3(ω)|r jt-1| + εjt (1a) 

 

τETHt (ω|Ωτ−1 )= γ0(ω) + γ1(ω)r jt-1 + γ2(ω)rETHt-1 +γ3(ω)|rETHt-1| + εETHt (1b) 

 

where j = COR, SOY, WHE, CAT, PI1, PI2 and t = 2,…,T0. 
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In models (1a)-(1b), τjt(ω | Ωt-1) and τETHt (ω|Ωτ−1), for ω ∈ (0, 1), denote the 100ωth 

conditional expectile of returns on variable j and ethanol, respectively, whereas Ωt-1 is the 

information set available at time t-1. The absolute value of returns of the dependent variable 

is introduced to capture time variation in the conditional distribution of returns.  

Models (1a) [(1b)] are similar to the Conditional AutoRegressive Expectile (CARE) of Kuan 

et al. (2009), the only difference being the inclusion of the additional explanatory variables 

r jt-1 and |r jt-1| [rETHt-1 and |rETHt-1|]. For this reason, we refer to models (1a)-(1b) as CARE-X. 

Each model (1a) and (1b) (i.e. 12 models total) is estimated with ALS and quantiles are 

retrieved  as the proportion of returns lying below the 100ωth fitted expectile curve. The ALS 

estimator is the solution of minimizing an asymmetric quadratic loss function of the residuals 

from models (1a)-(1b).  Since this loss function is continuously differentiable in the residuals, 

the parameters of models (1a)-(1b) can be estimated with IWLS.8 

Newey and Powell (1987) have shown that if data are independently and identically 

distributed, the ALS estimator is consistent and asymptotically normal. An extension of these 

results to stationary and weakly dependent data, which is relevant for our paper, has been 

provided by Kuan et al. (2009).  

 Since each model (1a)-(1b) is estimated to match expectiles with quantiles α = 0.05, 0.10, 

0.15, …, 0.90, 0.95 (i.e. 19 quantiles), 228 series of one-period ahead forecasts are 

computed.9 

The size of the estimation sample is T0 = 180, which corresponds to 50% of the total number 

of observations, T, for the returns on ethanol. For each model and quantile, the vector of H 

forecasts is obtained with a rolling window procedure. We start by estimating each model 

using observations from t = 2 to t = T0, and calculate forecasts in t = T0 + 1. Then, 

observations from t = 3 to t = T0 + 1 are used to estimate each model and compute the 

corresponding forecasts in t = T0 + 2. This algorithm is iterated until forecasts in t  = T  are 

calculated. The rolling window forecasting scheme satisfies the assumptions underlying the 

Conditional Predictive Ability (CPA) test of Giacomini and White (2006), whose asymptotic 

distribution is obtained for fixed T0 and H → ∞. Due to different sample sizes, the forecast 

evaluation period varies across commodities. Specifically, April 1997-March 2012 (H = 180) 

for PI1 and field crops, while April 1997-December 2010 (H = 165) for PI2 and cattle. 

                                                 
8 We use OLS estimates as the starting values for the IWLS algorithm and set the convergence criterion equal to 
10-12. 
9 This figure excludes the forecasts obtained using the benchmark models. 
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One problem that might affect expectile and quantile regression estimates and forecasts is the 

violation of the monotonicity condition. In other words, estimated conditional quantile and 

expectile curves might exhibit some “crossings” (Kroenker and Xiao, 2006). Although in our 

case the incidence of this potential drawback is negligible (i.e. there are only 58 crossings out 

of 39900 forecasts, which corresponds to less than 0.6% of the forecasts obtained with 

CARE-X models), we tackle the problem with an “insanity filter”, which corrects 

monotonicity violations by substituting crossing CARE-X forecasts with the following 

benchmarks (see also Swanson and White, 1995): 

 

τjt (ω|Ωτ−1) = β0(ω) + εjt (2a) 

 

τETHt (ω|Ωτ−1) = γ0(ω) + εETHt (2b) 

 

 

We refer to specifications (2a)-(2b) as the Constant Expectile (CE) models. Models (2a)-(2b) 

imply that for each variable and expectile the optimal forecast in t + 1 is the estimate of the 

100ωth expectile at time t. 

In-sample and out-of-sample Granger causality tests can be easily calculated in the context of 

the CARE-X models (1a)-(1b). For instance, an in-sample test of Granger causality running 

from variable j to ethanol would involve testing the null hypothesis H0: γ1(ω) = 0 in model 

(1b). Conversely, testing the null hypothesis H0: β1(ω) = 0 in model (1a) corresponds to an 

in-sample test of Granger causality from ethanol to variable j. Moreover, an out-of-sample 

Granger causality test requires to compare the forecasting performances of models (1a)-(1b) 

with the CE models (2a)-(2b). 

Since models (2a)-(2b) assume that returns are unpredictable, out-of-sample tests of 

predictability can be carried out by asking which models produce the lowest forecast error 

loss function. If the lowest loss is associated to models (1a)-(1b), then we can conclude that 

returns on ethanol [variable j] can be predicted using returns on variable j [ethanol]. 

 

5.2 Evaluating quantile and density forecasts 

We evaluate forecasts by means of the asymmetric quadratic loss function: 

 

Lt,α(r it, tq ,ˆα ) = [α + (1-2α) × I(r it - tq ,ˆα  ≤ 0)] × |r it - tq ,ˆα |2 (3) 
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where tq ,ˆα  is the quantile forecast obtained from the ALS estimation of CARE-X models (1a)-

(1b) and CE models (2a)-(2b); t = T0 + 1, …, T; α = 0.05, 0.10, 0.15, …, 0.90, 0.95; i = ETH, 

COR, SOY, WHE, CAT, PI1, PI2. 

For each quantile α, a given CARE-X model produces more accurate forecasts than its 

benchmark if the average loss (defined as: Lα(.) = H-1 ∑T
t=T0+1 Lt,α(.)) of the CARE-X model 

is smaller than the average loss of the corresponding CE model. 

The quantile scoring rule (QS) of Gneiting et al. (2011) is the second tool we use for forecast 

evaluation. While the asymmetric quadratic loss delivers a picture of the predictive 

performance of a model in different parts of the distribution (i.e. in different quantiles, taken 

in isolation), the QS provides a summary of the model’s overall ability to forecast the whole 

distribution (i.e. across all quantiles). Scoring rules have the same interpretation as loss 

functions: more accurate density forecasts are associated to lower scores, less accurate 

density forecasts are associated to higher scores. The QS can be written as: 

 

QSα(r it, tq ,ˆα ) = 2 × [I(r it - tq ,ˆα  ≤ 0) - α] × ( tq ,ˆα - r it)   (4) 

 

The QS (4) assigns the same weight to all forecast errors, independently of their location in 

the support of the distribution. Should the focus be on the tails or on the centre of the 

distribution, it would be more appropriate to associate a higher score to the area of interest. 

Gneiting et al. (2011) have proposed a weighted version of the QS given by: 

 

WQSα(r it, tq ,ˆα )=v(α)×QSα(r it, tq ,ˆα ) 

 

where v(α) is a weight function that assigns a higher score to the desired part of the 

distribution. We consider four weighted quantile scores to focus on the following parts of the 

distribution: 1) Centre: v(α) = α (1 - α); 2)Tails: v(α) = (2α  - 1)2; 3) Left Tail: v(α) = (1 - α)2; 

4) Right Tail: v(α) = α 2. Therefore we have used a total of five scoring rules for each CARE-

X model and its corresponding benchmark. Noting that the uniform quantile score (4) is 

obtained for v(αk) = 1, k = 1, …, K = 19, the average score for the i-th CARE-X model is: 
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 for t = T0 + 1, …,T. The i-th CARE-X model is on average more accurate at forecasting the 

whole distribution of returns on variable i, or some parts of it (e.g. centre, one or both tails), 
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The CPA statistic of Giacomini and White (2006) tests the significance of score differentials, 

∆St, where ∆St =
,CARE X i

tAWQS − - ,CE i
tAWQS . The CPA test is very flexible, since it applies to 

point, interval, probability or density forecasts for a wide range loss functions and data-

generating processes, while forecasts can be obtained from nested and nonnested models 

estimated with parametric, semi-parametric, nonparametric, as well as Bayesian methods. 

The CPA test is a Wald-type test statistic that can be written as: 
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where ht is a q × 1 vector of test functions, Λ is an heteroscedasticity- and autocorrelation-

consistent estimate of the asymptotic covariance matrix of ht∆St, and the null hypothesis to be 

tested is H0: E(ht∆St) = 0, for t = T0 + 1, …, T. Under the assumption that forecasts originate 

from “limited memory methods”, such as rolling windows or the fixed estimation sample 

forecasting scheme (according to which the size of the estimation sample, T0, is kept constant, 

while the size of the evaluation sample, H, increases), the CPA test (6) tends to a χ 2(q), as     

H → ∞. 

For q = 1 and ht = 1, the CPA test collapses to an unconditional test of predictive ability. In 

this case, a rejection of the null hypothesis, coupled with a negative score differential, 

suggests that the CARE-X model is on average more accurate than the CE model. Since 

traditional fuels, biofuels and agricultural markets are intertwined, we use a dummy variable 

based on net oil price increases (NOPI) to check if there are asymmetries in the forecasting 
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performance of CARE-X models across quiet and turbulent phases of the energy markets.10 

For this reason, we set q = 2 and specify ht as a function of a constant term and the NOPI 

dummy variable. A rejection of the null hypothesis provides evidence that the forecast 

differential is statistically different from zero. Hence, according to the sign of the differential, 

it is possible to determine whether, conditionally on the state of the oil market, CARE-X 

forecasts are more accurate than CE forecasts.  

 

 

6. Empirical Results 

 

6.1 In-sample results 

Estimates of CARE-X models (1a)-(2a) for the period January 1987 through March 2012 

(December 2011 for variables CAT and PI2) are shown in Table 2.  

 

[Table 2 about here] 

 

From Panel a), the coefficients associated to lagged returns on ethanol are in the vast majority 

of cases statistically insignificant, irrespective of the quantile. Moreover, neither the 

magnitude, nor the sign of the coefficients display any clear pattern across quantiles. For both 

price indices the coefficient on lagged ethanol returns is positive in the left tail of the 

distribution, then constantly decreases, becoming negative in the right tail. Looking at the 

CARE-X model for corn, lagged returns on ethanol have negative coefficients for quantiles 

below the median, while positive coefficients above the median. In the case of soybeans, we 

can see that price returns are negatively correlated with ethanol and that most of the 

coefficients in the right tail of the distribution are statistically significant only at the margin. 

The Bonferroni statistic for testing the joint null hypothesis that all coefficients associated to 

lagged returns on ethanol are zero across quantiles is reported in the last row of Table 2 for 

each estimated model. The null hypothesis is rejected for both price indices only, due to the 

significance of the coefficients estimated within the extreme quantiles (0.85-0.95). 

Interestingly, it is not possible to reject the null hypothesis for soybeans, which is the only 

                                                 
10 Net oil price increases proxy oil shocks. Following Hamilton (1996), we construct a dummy variable, NOPIt, 
where NOPIt=1 if the spot price of WTI crude oil in month t is higher than the maximum price recorded during 
the previous three years, and NOPIt=0 otherwise. The test function ht includes NOPIt-1. 
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commodity showing some statistically significant coefficients associated to lagged returns on 

ethanol. 

In summary, we are unable to find any empirical evidence of a solid relation between ethanol 

and field crops or cattle. Keeping in mind that those findings are against the presence of 

bivariate Granger causality running from ethanol to returns on price indices, corn, wheat and 

cattle, there is no reason to expect that ethanol can be fruitfully exploited to make predictions 

for these variables. 

The lack of causality running from ethanol returns to field crops returns is consistent with the 

literature reviewed in Section 2. However, our results are more general, since we are allowed 

to conclude that returns on ethanol do not provide useful information for forecasting any part 

of the distribution of returns on corn and field crops. 

The pattern of coefficients reported in Panel b) of Table 2 is completely different. In CARE-

X models with returns on ethanol as the dependent variables, lagged returns on price indices 

and field crops are statistically significant for most of the quantiles, while coefficients on 

cattle are always statistically insignificant. All coefficients are positive and tend to decrease 

and become statistically insignificant as one moves from the left to the right tail of the 

distribution. Price indices and the other field crops seem to have predictive power for the 

centre and the left tail of the distribution of the ethanol returns. On the contrary, none of the 

exogenous variables is statistically significant for large quantiles. Finally, the Bonferroni tests 

allow to reject the joint null hypothesis of absence of Granger causality for all variables, with 

the exception of  cattle. 

To conclude, there is no evidence of bivariate Granger causality running from ethanol to field 

crops and cattle. Conversely, field crops seem to Granger cause ethanol. More precisely, our 

results suggest that returns on field crops might be used to forecast the centre and the left tail 

of the distribution of returns on ethanol, with the exception of its right tail.  

 

6.2 Forecast Evaluation 

The evaluation period for one-month ahead forecasts spans April 1997-March 2012 (H = 180) 

for PI1 and field crops and April 1997-December 2010 (H = 165) for PI2 and cattle. 

For each quantile and model, we compute the asymmetric quadratic loss (3), which allows us 

to check whether the forecasts obtained with CARE-X models are on average more accurate 

than the benchmark CE forecasts.  
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In Panel (a) of Table 3 we show the asymmetric quadratic loss for CARE-X models (1a), 

where (lagged) ethanol is the exogenous explanatory variable and returns on variable j is the 

dependent variable. It is important to remember that ethanol has no in-sample predictive 

power for both price indices, cattle and most field crops. When price indices PI1 and PI2 and 

field crops are considered, the benchmark CE model (2a) leads to an average loss lower than 

the average loss calculated on the CARE-X (1a) forecasts in 33 cases out of 50. Ten of these 

occurrences are associated to the CARE-X models applied to soybeans returns, with respect 

to which our in-sample analysis has suggested that ethanol might have predictive power. 

CARE-X models (1a) applied to corn returns and PI1 produce more accurate forecasts that 

their corresponding benchmarks for extreme quantiles. However, in general the magnitude of 

the loss differentials is negligible. 

For PI2 and wheat the CE benchmark (2a) is always associated to lower losses than the 

CARE-X (1a) models. Somewhat puzzling, the CARE-X model outperforms the benchmark 

also for cattle, with respect to which ethanol has no in-sample predictive power. 

 

[Table 3 about here] 

 

Panel (b) of Table 3 presents the asymmetric quadratic losses for ethanol forecasts, that is for 

CARE-X models (1b) and corresponding CE benchmarks (2b). Since field crops have no in-

sample predictive power for the right tail of distribution of ethanol returns, we compute for 

each quantile two additional forecast models. The first (EW-ALL) is an equally weighted 

average of all forecasts for ethanol obtained from CARE-X models (1b), while the second 

(EW-CROPS) is an equally weighted average of forecasts for ethanol obtained from the 

subset of CARE-X models which include field crops as exogenous variables. 

The benchmark CE models are outperformed 80% of the cases. Only in correspondence to 

the 0.90 and 0.95 quantiles do the CE models perform best, confirming that extreme ethanol 

price increases cannot be predicted with field crops. The combined forecast model EW-

CROPS performs best for some quantiles above the median (i.e. 0.60, 0.75, 0.80), where lack 

of Granger causality is found.  

An alternative way of comparing the forecasting performance of CE and CARE-X models is 

to calculate optimal combining weights. For each model and quantile, the optimal combining 

weights are the estimated coefficients of regressing realized returns on the i-th variable on a 

constant term and forecasts obtained with CARE-X and CE models applied to the i-th 
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variable, i = ETH, COR, SOY, WHE, CAT, PI1, PI2. As shown by Elliott and Timmermann 

(2004), when the loss function is specified as equation (3), the optimal forecast combination 

weights can be estimated with IWLS. If the optimal combining weight of the forecasts 

obtained with CARE-X model (1a) (φ1) is equal to one and the optimal combining weight of 

the forecasts obtained with CE model (2a) (φ2) is equal to zero, then the forecasts obtained 

with CARE-X model (1a) are more accurate than the forecasts based on the CE benchmark 

model (2a). In this sense, CARE-X model (1a) “forecast-encompasses” CE model (2a). 

Analogously, if the optimal combining weight of the forecasts obtained with CARE-X model 

(1b) (ψ1) is equal to one and the optimal combining weight of the forecasts obtained with CE 

model (2b) (ψ2) is equal to zero, then CARE-X model (1b) “forecast-encompasses” CE 

model (2b).    

Estimated optimal combining weights and statistical tests of the null hypotheses φ1=1 (ψ1=1) 

and φ2=0 (ψ2=0) are reported in Table 4. Results in Panel (a) indicate that in most cases the 

CARE-X combining weights are statistically different from unity, suggesting lack of 

“forecast encompassing”. Therefore, the test results are supportive of the in-sample absence 

of Granger causality running from ethanol to corn, wheat, price indices and cattle. Once again, 

ethanol seems to be useful to forecast some parts of the distribution of soybean returns. 

Actually, with the exception of the smallest and largest quantiles, the null hypotheses φ1=1 

and φ2=0 are never rejected. 

 

[Table 4 about here] 

 

The results reported in Panel (b) have a penchant for “forecast encompassing”. In the case of 

PI1 and field crops, the null hypotheses ψ1=1 and ψ2=0 cannot be rejected for quantiles from 

0.05 to 0.75. Interestingly, for PI1 and PI2, which are by construction linear combinations of 

different series of returns, the two null hypotheses are not rejected also for the 0.90-th 

quantile. 

So far, we have analysed the forecasting performance across different quantiles taken in 

isolation. Our investigation has highlighted that: (i) while ethanol cannot be used to forecast 

any part of the distribution of returns on price indices, corn, wheat and cattle, (ii ) nevertheless 

it has some predictive power for soybean; (iii ) field crops can be used to forecast the centre 

and the left tail of the distribution of ethanol returns.  
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We use the quantile score function and the CPA test to evaluate the predictive performance of 

each model on the whole distribution, that is jointly across quantiles. 

The weighted versions of the quantile scoring rules (4)-(5) assign a higher score to specific 

parts of the distribution. For instance, if one is interested on the tails of the distribution, 

higher penalty can be attached to forecast errors that occur outside the inter-quartile range 

and a lower penalty to errors around the median.  

The numerical values of the score differentials and results of the unconditional (UPA) and 

conditional predictive ability  (CPA) tests are presented in Table 5. 

 

[Table 5 about here] 

 

The score differentials reported in Panel a) are generally positive and the UPA and CPA tests 

lead to 8 rejections out of 90 comparisons. That is, ethanol has in general no predictive 

content for (any part of) the distributions of the returns on field crops, cattle and price indices. 

In Panel b), the average un-weighted (“Uniform”) standardized score differential  is negative, 

meaning that density forecasts from the CARE-X model (1b) are to be preferred to the 

density forecasts from the benchmark CE model (2b). However, the UPA test indicates that 

the score differential is not statistically different from zero. Two are the CPA tests reported in 

Table 5. The first, CPA1, includes in the test function of equation (6) a constant term and the 

first lag of the score differential, while the second test, CPA2, is conditional on both a 

constant term and the NOPI dummy variable. The conditional tests always reject the null 

hypothesis of equal predictive ability, with p-values lower than 5% (6 out of 12 cases) or 

lower than 10% (6 out of 12 cases). These results suggest that corn can be used to forecast the 

whole distribution of ethanol. 

Although the numerical values of the weighted score differentials are almost invariantly 

negative (with the only exception of cattle), in most cases we cannot reject, neither 

unconditionally nor conditionally, the null hypothesis of equal predictive ability for the tails 

(taken jointly) and the right tail of the distribution. Conversely, the null hypothesis is rejected 

most of the times in the centre and left tail of the distribution. These findings are, on the one 

hand, not surprising, since different weights are applied to different parts of the distribution, 

while, on the other hand, they contribute to illustrate that conditioning on past forecasting 

performances (i.e. CPA1) or on the state of the oil market (i.e. CPA2) is relevant for the 

performance of the predictive ability tests. 
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The ability of field crops to forecast the centre and the left tail of the distribution of ethanol 

returns is confirmed as well. In particular, for PI1 and field crops, 35 rejections of the null 

hypothesis of equal predictive ability are observed out of 60 cases. The majority of those 

rejections is observed in the centre (18.3%) and in the left tail (20%). The predictive ability of 

PI2 and cattle is extremely poor. Actually, the null hypothesis of equal predictive ability is 

rejected 12 times out of 30 comparisons, most of which are due to PI2. 

Figure 2 reports different score functions for the density forecasts of ethanol, obtained with 

CARE-X model (1b), where the explanatory variable is corn, and compared with the score of 

the density forecasts from the corresponding CE benchmark model (2b). 

 

[Figure 2 about here] 

 

The top panel (“Uniform”) displays the unweighted quantile score function. In this case 

forecast errors are given the same penalty along the whole support of the distribution. The 

score of the CE benchmark model (2b) lies above the score of the CARE-X model (1b) for all 

quantiles below α = 0.75. As a consequence, the score differential is negative in the left tail 

and around the centre of the distribution, while positive in the right tail. This suggests, once 

again, that both the centre and the left tail of the distribution of ethanol returns can be 

predicted using corn. The four panels at the bottom of Figure 2 show weighted score 

functions. The two plots in the left part of the middle panel illustrate quantile scores that 

assign more weight to forecast errors in the centre and in the left tail of the distribution. In 

this case, forecasts obtained from the CARE-X model are generally superior to forecasts 

calculated with the benchmark CE model. The two plots in the right part of the middle panel 

show quantile scores which give more weight to forecast errors in both tails and in the right 

tail of the distribution. Focussing our attention to the latter, the density forecasts obtained 

using the CE model (2b) are on average more accurate than the predictions generated by the 

corresponding CARE-X model (1b).  

 

7. Conclusions 

In this paper we have analyzed the predictive relationship between returns on ethanol, field 

crops and cattle in the state of Nebraska. The ultimate aim is to seek support in favor or 

against the “Food versus Fuel” debate, according to which food price inflation is primarily 

due to the ethanol production boom in the U.S.. An important implication of this view is that 
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causality should run from the price of ethanol to the price of corn and, by extension, other 

field crops.  

Our analysis has been carried out on monthly data, spanning January 1987-March 2012. 

Density forecasts obtained by estimating different specifications of Conditional 

Autoregressive Expectile (CARE) models have been evaluated on a sample running form the 

late 1997 through the early 2012. This time period is very challenging, since it is 

characterized by two recessions, very volatile energy markets and includes the financial crisis. 

Clearly, these events are mirrored in the recent developments of the whole U.S. economy, 

including the biofuel and agricultural markets and the price dynamics of the commodities 

traded in those markets. Any change that these markets might have experienced can hardly be 

identified by a single moment of the distribution of percentage price variations (i.e. returns). 

Rather, it is more likely that, given the complexity and the magnitude of events such as 

recessions and financial crises, a clearer picture of the predictive relationships between 

ethanol and field crops returns can be obtained only by looking at their entire distributions. 

In this paper, instead of focusing on specific moments of the distribution of returns, we have 

analysed the whole distribution of returns. This new perspective of investigation is 

appropriate for at least two reasons. First, since returns are generally non-normal, their 

distribution can be hardly summarized by the mean.  Second, rational decision makers rely on 

density forecasts in order to maximize their expected utility functions. 

We have calculated density and quantile forecasts using CARE models with exogenous 

variables to address the following questions: i) what is the direction of Granger causality 

between ethanol, field crops, and cattle? ii ) are the observed causality linkages a feature of 

the whole return distribution or of some specific parts? iii ) can any in-sample evidence of 

causality be exploited to improve out-of-sample forecasts? 

Overall, our results do not support the general view of the “Food versus Fuel” debate. 

More specifically, both in-sample and out-of-sample results confirm and extend the findings 

of most of the existing literature. Actually, we find very limited empirical evidence, if not any 

at all, that ethanol Granger causes field crops or cattle. Rather, we provide empirical support 

for the existence of reverse causality, running from field crops to ethanol. 

The novelty of our approach is twofold: i) we have carried out systematic forecast evaluation; 

ii ) instead of focusing only on returns first and second moments, we have analysed the 

predictive relationships between ethanol and field crops for different quantiles taken in 

isolation and for their distributions as a whole. 
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Out-of-sample results are consistent with in-sample evidence. First, ethanol returns cannot be 

used to forecast any part of the distributions of returns on field crops and cattle. Second, both 

quantile and density forecasts for ethanol can be improved by using returns on field crops as 

explanatory variables. Third, these results hold for the centre and the left-tail of the 

distribution of ethanol returns, but not for its right tail. Finally, the information content of 

returns on field crops can be fruitfully exploited to forecast extreme price decreases, which 

are of interest in risk management to compute value-at-risk or expected shortfall, as well as to 

construct prediction intervals for policy evaluation exercises.  
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Tables & Figures 

Table 1. Descriptive Statistics: January 1987 - December 2011/March 2012 
Panel (a): Prices  

   ETH  
 PI1 

 (CAT excl.)  
 PI2 

 (CAT incl.)   COR   SOY   WHE   CAT 
Mean 1.53 102.63 347.25 2.70 6.71 3.84 76.52 
Coef. Var. 0.35 0.51 0.28 0.40 0.33 0.38 0.15 
Min 0.89 47.46 215.08 1.43 4.00 1.99 58.60 
Date Min 01/1987 01/1987 01/1987 02/1987 10/2001 11/1999 09/1998 
Max 3.58 287.70 723.11 6.93 13.30 9.84 104.00 
Date Max 06/2006 06/2011 12/2010 08/2011 08/2008 03/2008 12/2010 
Panel (b): Returns 

   ETH  
 PI1 

 (CAT excl.)  
 PI2 

 (CAT incl.)   COR   SOY   WHE   CAT 
Mean 0.09 0.15 0.06 0.09 0.05 0.08 0.19 
Coef. Var. 82.05 38.80 55.55 60.25 93.56 66.21 17.67 
Skewness 0.40 0.53 0.37 -0.62 -0.23 -0.54 0.02 
Kurtosis 4.26 10.76 5.79 6.60 4.81 6.57 4.51 
Notes: CAT = cattle; COR = corn; ETH = ethanol; PI1 = price index 1; PI2 = price index 2; SOY = soybean; WHE = wheat. 
The time period spanned by the monthly nominal spot price of CAT and PI2 is January 1987-December 2011, while the 
monthly nominal spot prices of COR, ETH, SOY, WHE and PI1 are observed from January 1987 to March 2012.  
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Table 2. Coefficient Estimates: March 1987 - December 2011/March 2012 
Panel a) Does ETH Granger Cause variable j?   
 j 
α PI1 PI2 COR SOY WHE CAT 
0.05 0.156 0.022 -0.046 0.001 0.041 -0.036 
0.10 0.073 0.022 -0.074 -0.047 0.000 -0.015 
0.15 0.052 0.018 -0.065 -0.054 0.004 -0.004 
0.20 0.036 0.016 -0.053 -0.054 0.005 -0.002 
0.25 0.028 0.014 -0.044 -0.053 0.013 0.000 
0.30 0.016 0.010 -0.040 -0.051 0.018 0.001 
0.35 0.007 0.008 -0.034 -0.052 0.023 0.002 
0.40 -0.001 0.005 -0.029 -0.053 0.026 0.004 
0.45 -0.006 0.002 -0.025 -0.054 0.028 0.007 
0.50 -0.011 0.001 -0.020 -0.056 0.030 0.008 
0.55 -0.018 -0.001 -0.016 -0.058* 0.029 0.011 
0.60 -0.029 -0.003 -0.011 -0.061* 0.029 0.014 
0.65 -0.037 -0.006 -0.005 -0.063* 0.029 0.016 
0.70 -0.048 -0.013 0.001 -0.065* 0.027 0.022 
0.75 -0.061 -0.018 0.005 -0.067* 0.027 0.026 
0.80 -0.086 -0.026 0.012 -0.071* 0.024 0.034 
0.85 -0.113* -0.039 0.026 -0.081* 0.014 0.041 
0.90 -0.174*** -0.072* 0.029 -0.095** 0.010 0.049 
0.95 -0.362*** -0.168*** 0.001 -0.119* -0.016 0.087** 
Bonferroni 0.002*** 0.015** 1.000 0.471 1.000 0.409 
Panel b) Does variable j Granger Cause ETH? 
 i 
α PI1 PI2 COR SOY WHE CAT 
0.05 0.280*** 0.422*** 0.212** 0.333*** 0.313*** 0.224 
0.10 0.234*** 0.388*** 0.248*** 0.313*** 0.273*** 0.157 
0.15 0.199*** 0.311*** 0.250*** 0.316*** 0.229*** 0.082 
0.20 0.177*** 0.253*** 0.244*** 0.299*** 0.178** 0.060 
0.25 0.158*** 0.224*** 0.242*** 0.285*** 0.157** 0.051 
0.30 0.144*** 0.187** 0.238*** 0.273*** 0.144** 0.039 
0.35 0.137** 0.175* 0.234*** 0.255*** 0.138** 0.034 
0.40 0.132** 0.167 0.229*** 0.245*** 0.135** 0.030 
0.45 0.127** 0.160 0.225** 0.231** 0.132** 0.027 
0.50 0.122* 0.154 0.219** 0.222** 0.131* 0.024 
0.55 0.118 0.150 0.214* 0.213* 0.130 0.016 
0.60 0.114* 0.148 0.210** 0.205** 0.131** 0.012 
0.65 0.112** 0.148 0.201** 0.197** 0.132** 0.010 
0.70 0.110** 0.149 0.193** 0.188** 0.131** 0.015 
0.75 0.108* 0.151 0.187** 0.183** 0.131** 0.024 
0.80 0.105* 0.152 0.178** 0.178** 0.134** 0.024 
0.85 0.104 0.153 0.166 0.157 0.138* 0.008 
0.90 0.114 0.170 0.156 0.138 0.141 -0.031 
0.95 0.123 0.073 0.105 0.060 0.167 -0.156 
Bonferroni 0.000*** 0.000*** 0.001*** 0.006*** 0.002*** 1.000 
Notes: See notes in Table 1. In Panel a) the estimated model is (1a), where the dependent variable is the returns on variable j. In Panel b) the 
estimated model is (1b), where the dependent variable is the returns on ethanol. Entries of the table are the p-values for the null hypothesis 
of no Granger Causality (GC) running from ethanol to variable  j (Panel a) and from variable  i to ethanol (Panel b). The null hypothesis is 
H0: β1 = 0 in model (1a) for Panel a), or H0: γ1 = 0 in model (1b) for Panel b). Headers reported in column α indicate the quantiles estimated 
from expectiles. “Bonferroni” indicates the Bonferroni bound for the joint null hypothesis of no GC across quantiles. * (**) [***] denotes  
rejection of the null hypothesis of no GC at 0.10 (0.05) [ 0.01] significance level. 
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Table 3. Asymmetric Quadratic Loss 
Panel a) CARE-X model (1a) vs CE model (2a) 
j/α 0.05 0.10 0.25 0.40 0.50 0.60 0.75 0.80 0.90 0.95 
PI1 11.147* 15.129* 22.697* 27.272 28.359 28.802 27.076 25.333 19.909 16.378 
CE(1) 11.225 15.281 22.816 27.194* 28.129* 28.394* 26.338* 24.501* 18.804* 15.711* 
PI2 3.346 4.832 7.676 9.004 9.391 9.475 8.759 8.218 6.429 4.682 
CE(2) 3.270* 4.757* 7.454* 8.728* 9.036* 9.047* 8.226* 7.654* 5.859* 4.398* 
COR 7.413* 10.227* 14.372 15.863 15.857 15.265 13.120 11.949 8.353* 6.001* 
CE(1) 9.013 10.468 14.263* 15.698* 15.649* 15.093* 12.977* 11.812* 8.408 6.063 
SOY 7.545* 10.014* 13.827* 15.126* 15.094* 14.424* 12.157* 11.006* 7.753* 5.308* 
CE(1) 7.768 10.655 14.986 16.323 16.183 15.414 12.806 11.472 8.062 5.711 
WHE 13.400 17.019 25.234 28.608 29.453 28.795 25.267 23.531 16.979 11.957 
CE(1) 11.032* 15.400* 23.421* 26.618* 27.425* 26.810* 23.798* 22.162* 16.416* 11.714* 
CAT 2.515* 3.509* 4.716* 5.141* 5.232* 5.149* 4.645* 4.294* 3.369* 2.590* 
CE(2) 2.583 3.677 5.070 5.583 5.656 5.518 4.942 4.517 3.400 2.735 
Panel b) CARE-X model (1b) vs CE model (2b) 
j/α 0.05 0.10 0.25 0.40 0.50 0.60 0.75 0.80 0.90 0.95 
PI1 13.286* 19.956 31.947 38.318 40.196 39.942 36.053 33.865 24.773 18.033 
PI2 14.224 21.905 35.671 42.222 44.073 43.607 39.040 36.460 26.107 18.204 
COR 13.754 20.544 33.330 39.237 40.890 40.322 36.602 34.162 25.318 18.371 
SOY 13.404 19.545* 31.809* 37.852* 39.553* 39.452 35.752 33.505 25.113 18.084 
WHE 13.823 20.186 32.293 38.525 40.275 40.068 36.014 33.567 25.092 17.854 
CAT 14.673 22.108 36.020 42.490 44.196 43.752 39.076 36.185 25.378 17.966 
CE(1) 15.915 24.804 37.023 42.991 44.052 42.985 37.284 34.453 24.414* 17.357 
CE(2) 15.886 24.849 38.869 44.885 46.294 45.296 39.299 36.186 24.992 16.803* 
EW-ALL 13.468 20.071 32.369 38.411 40.174 39.892 35.956 33.638 24.790 17.734 
EW-CROPS 13.420 19.718 31.882 37.872 39.611 39.377* 35.627* 33.282* 24.867 17.748 

Notes: See notes of Table 1. The table reports the asymmetric quadratic loss function for each estimated model. In Panel a) the model of interest is (1a), where the dependent variable is the returns on variable j. In 
Panel b) the model of interest is (1b), where the dependent variable is the returns on ethanol. Headers reported in row α indicate the quantiles estimated from expectiles. The benchmark forecasts are obtained from the 
CE models (2a) (Panel a) and (2b) (Panel b), and the equally-weighted forecast combinations (EW). Two are the evaluation periods: 1) April 1997-March 2012 (H = 180) for PI1 and field crops; 2) April 1997-
December 2010 (H = 165) for PI2 and CAT. CE(1) and CE(2) refer to CE models evaluated in period 1) or period 2), respectively. EW-ALL and EW-CROPS are the EW combined forecasts based on all variables and 
field crops only. In Panel a) an asterisk identifies the best model (i.e. lowest loss model) for each variable j and each quantile α. In Panel b) an asterisk identifies the best model for each quantile α.  
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Table 4. Optimal Combining Weights: CARE-X and CE Forecasts 
Panel a) 
  α 
 0.05 0.10 0.25 0.50 0.75 0.90 0.95 
j CARE-X CE CARE-X CE CARE-X CE CARE-X CE CARE-X CE CARE-X CE CARE-X CE 
PI1 0.423* -0.518 0.970 -1.887** 0.945 -1.886 0.295 2.299 -0.243** 2.287 -0.982*** 2.678*** -0.790***  0.765 
PI2 0.278** -4.422*** 0.018 -1.196 -0.003** -6.054** 0.117 0.814 -0.039** 3.797** -0.262** 4.745*** -0.030** 1.554** 
COR 0.505** 0.732 0.459*** 1.396 0.475*** 0.607 0.431*** 1.951 0.449*** 1.852 0.428** 1.728 0.092*** 0.599 
SOY 0.246*** 0.023 0.580 -1.292 0.740 -2.661 0.730 -0.024 0.699 -0.084 0.519* 0.216 0.290** 0.844 
WHE -0.706*** 0.448 -0.634*** -0.149 -0.356*** -2.326 -0.173** -0.678 -0.091*** 0.761 0.203* 0.549 0.358 -0.072 
CAT 0.577* -0.064 0.766 -6.602 0.975 -3.581 0.938 -0.936 0.847 -1.685 0.457 -5.537*** 0.374** -2.475** 
Panel b) 
  α 
 0.05 0.10 0.25 0.50 0.75 0.90 0.95 
j CARE-X CE CARE-X CE CARE-X CE CARE-X CE CARE-X CE CARE-X CE CARE-X CE 
PI1 0.847 -0.142 0.930 -0.394 1.044 -0.142 1.016 0.133 0.770 0.406 0.293 0.660 0.161** 0.838 
PI2 0.702 1.100* 0.865 0.402 0.981 -0.025 0.889 0.136 0.621 0.187 0.198 0.393 0.193* 0.279 
COR 0.751 0.356 0.947 -0.310 0.900 -0.207 0.788 0.154 0.597 0.345 0.183* 0.618 0.053** 0.714 
SOY 0.761 0.040 0.878 -0.102 0.978 -0.144 0.988 0.186 0.808 0.427 0.163* 0.604 0.036** 0.705 
WHE 0.774 -0.063 0.966 -0.515 1.103 -0.196 1.038 0.088 0.790 0.455 0.270* 0.751 0.201** 0.830 
CAT 0.655** 0.937 0.856 0.076 0.854 -0.107 0.753 0.057 0.604 0.069 0.270 0.340 0.177* 0.344 
Notes: See notes of Table 1. In Panel a) CARE-X and CE indicate models (1a) and (2a) respectively, where the dependent variable is the returns on variable j. In Panel b) CARE-X and CE indicate models (1b) and 
(2b) respectively, where the dependent variable is the returns on ethanol. Headers reported under the label α indicate the quantiles estimated from expectiles. Numbers reported in Panel a) are the combining weights φ1 
and φ2 estimated from the regression model: r jt = φ0 + φ1r jt

CARE-X + φ2r jt
CE + ejt, where r jt are actual returns from variable j, r jt

CARE-X are forecasts from CARE-X model (1a) and rjt
CE are forecast from CE model (2a). 

Coefficients φ0, φ1 and φ2 are estimated with Iterated Weighted Least Squares. If the single null hypotheses φ1=1 and φ2=0 are not rejected, then forecasting with CARE-X model (1a) is more accurate than forecasting 
with CE model (2a). * (**) [***] denotes  rejection of each single null hypothesis at 0.10 (0.05) [ 0.01] significance level. In Panel b) CARE-X and CE indicate models (1b) and (2b) respectively, where the dependent 
variable is the returns on ETH. Numbers reported in Panel b) are the combining weights ψ1 and ψ2 estimated from the regression model: rETHt = ψ0 + ψ1rETHt

CARE-X + ψ2rETHt
CE + eETHt, where rETHt are actual returns from 

ETH, rETHt
CARE-X are forecasts from CARE-X model (1b) and rETHt

CE are forecast from CE model (2b). Coefficients ψ0, ψ1 and ψ2 are estimated with Iterated Weighted Least Squares. If the single null hypotheses ψ1=1 
and ψ2=0 are not rejected, then forecasting with CARE-X model (1b) is more accurate than forecasting with CE model (2b). * (**) [***] denotes  rejection of each single null hypothesis at 0.10 (0.05) [ 0.01] 
significance level.  
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Table 5. Density Forecasts: Score Function Differentials and CPA Tests 
Panel a) Does ETH help forecasting variable j? 
  Weights: Uniform Weights: Center Weights: Tails Weights: Left Tail Weights: Right Tail 
j UPA CPA1 CPA2 UPA CPA1 CPA2 UPA CPA1 CPA2 UPA CPA1 CPA2 UPA CPA1 CPA2 
PI1 0.023 0.023 0.023 0.014 0.014 0.014 0.049 0.049 0.049 -0.032 -0.032 -0.032 0.080 0.080 0.080 
PI2 -0.016 -0.016 -0.016 -0.025 -0.025 -0.025 0.014 0.014 0.014 -0.003 -0.003 -0.003* -0.015 -0.015 -0.015 
COR 0.043 0.044 0.043* 0.045 0.045 0.045* 0.034 0.034 0.034* 0.021 0.021 0.021 0.058 0.058 0.058* 
SOY -0.064 -0.064 -0.064 -0.063 -0.063 -0.063 -0.061 -0.061* -0.061 -0.061 -0.061 -0.061 -0.056 -0.056 -0.056 
WHE 0.099 0.099 0.099 0.092 0.092 0.092 0.108 0.108 0.108 0.056 0.056 0.056 0.132* 0.132** 0.132 
CAT -0.082 -0.082 -0.082 -0.086 -0.086 -0.086 -0.056 -0.056 -0.056 -0.105 -0.105 -0.105 -0.041 -0.041 -0.041 
Panel b) Does variable j help forecasting ETH? 
 Weights: Uniform Weights: Center Weights: Tails Weights: Left Tail Weights: Right Tail 
j UPA CPA1 CPA2 UPA CPA1 CPA2 UPA CPA1 CPA2 UPA CPA1 CPA2 UPA CPA1 CPA2 
PI1 -0.135* -0.135** -0.135** -0.147* -0.147** -0.147** -0.095 -0.095 -0.095 -0.173** -0.173** -0.173*** -0.045 -0.045 -0.045 
PI2 -0.097 -0.097* -0.097* -0.111 -0.111* -0.111* -0.055 -0.055 -0.055 -0.138* -0.138 -0.138** -0.016 -0.016* -0.016 
COR -0.102 -0.102* -0.102* -0.111 -0.111** -0.111** -0.065 -0.065 -0.065 -0.147* -0.147* -0.147** -0.018 -0.018* -0.018 
SOY -0.163** -0.163** -0.163* -0.179** -0.179** -0.179* -0.107 -0.107 -0.107 -0.189** -0.189** -0.189** -0.073 -0.073 -0.073 
WHE -0.143* -0.143** -0.143** -0.155** -0.155** -0.155** -0.103 -0.103 -0.103 -0.178** -0.178** -0.178*** -0.055 -0.055 -0.055 
CAT -0.064 -0.064* -0.064** -0.073 -0.073* -0.073** -0.036 -0.036 -0.036 -0.105 -0.105 -0.105** 0.003 0.003 0.003 
Notes: See notes of Table 1. This table reports standardized quantile weighted score function differentials (∆S), as defined in Section 5.2. Weights are used to evaluate score differentials in the Centre, Tails (both), Left 
Tail and Right Tail of the distribution. The option “Weights: Uniform” considers the unweighted distribution. In Panel a) negative numbers (i.e. ∆S<0) indicate that the score function of CARE-X model (1a) is on 
average lower than the score function of CE model (2a). In Panel b) negative numbers (i.e. ∆S<0) indicate that the score function of CARE-X model (1b) is on average lower than the score function of CE model (2b). 
Asterisks indicate rejection of the null hypothesis of the CPA test, namely H0: E(∆S)=0. * (**) [***] denotes rejection of the null hypothesis at 10% (5%) [1%]. A rejection of the null, coupled with ∆S<0, indicates that 
CARE-X forecast are on average more accurate than CE forecasts for a given part of the distribution of the dependent variable. UPA indicates the unconditional predictive ability test, when q=1 and ht=1 for any t. 
CPA1 is the CPA test when q=2 and ht

’=(1, ∆St-1
’). CPA2 is the CPA test when q=2 and ht

’=(1, NOPIt-1’), as defined in note 16. 
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Figure 1. Prices: Ethanol, Indices, Field Crops and Cattle (current dollars) 
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Notes: All prices are represented on a common scale (i.e. multiplied by 100 and divided by their value in January 1987). 
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Figure 2: Quantile Score Functions for Ethanol Forecasts 

 
Notes: This figure shows average weighted quantile score functions for ethanol forecasts obtained with equations (1b) and (2b) and corn as the explanatory variable. A continuous line identifies scores associated to 
density forecasts from CARE-X model (1b), while a dash-dotted line is used for density forecast from CE benchmark model (2b). CARE-X forecasts are preferred to CE forecasts if  CARE-X score lies below CE 
score. 
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Appendix 

Table A1. Data description 
Series ID Description Unit Frequency Time Period Sourcea 
PE Ethanol: Average Rack Prices 

F.O.B. Omaha, Nebraska 
Dollars per 
Gallon 

Monthly Jan/1982 - 
Mar/2012 

NEO 

PC Corn (Grain): Price Received Dollars per 
Bushel 

Monthly Jan/1982 - 
Mar/2012 

USDA 

PS Soybeans: Price Received Dollars per 
Bushel 

Monthly Jan/1982 - 
Mar/2012 

USDA 

PW Wheat: Price Received Dollars per 
Bushel 

Monthly Jan/1982 - 
Dec/2010 

USDA 

PB Cattle (>500 LBS): Price Received Dollars per 
CWTb 

Monthly Jan/1982 - 
Mar/2012 

USDA 

YCc Corn (Grain): Production Dollars Yearly 1982-2012 USDA 
YSc Soybeans: Production Dollars Yearly 1982-2012 USDA 
YWc Wheat: Production Dollars Yearly 1982-2012 USDA 
YBc,d Cattle (Incl Calves): Production Dollars Yearly 1988-2012 USDA 
Notes: (a) NEO = Nebraska Energy Office; USDA = U.S. Department of Agriculture - National Agricultural Statistics Service; BLS = 
Bureau of Labour Statistics; AC = Author's Calculations; (b) CWT = hundredweight; (c) The value for 2012 is obtained as a cubic trend 
forecast; (d) Yearly observations are obtained as averages of monthly data (i.e. CPIMW). 

 

The production variables described in Table A1 have been used to construct two commodity 

price indexes. The first (PI1 in the paper) is formed using percentage price variations of corn, 

wheat and soybeans; the second (PI2 in the paper) includes also cattle prices. Both indices 

have been constructed by averaging prices with production based weights of the form: 

 

wj,1,t = Yj ,t / (YCt + YWt + YSt), for j = C, S, W and t = 1982, …, 2012               (A1) 

wi,2,t = Yi ,t / (YCt + YWt + YSt + YBt), for i = C, S, W, B and t = 1982, …, 2010    (A2) 

 

Given that production variables are recorded at yearly frequency, we constructed monthly 

observations by assuming constant weights within the year (e.g. wj,1,1/1982 = wj,1,2/1982 = … = 

wj,1,12/1982, where r/1982 indicates the r-th month of year 1982). 

Weights calculated using current dollar production data are displayed in Figure A1. Current 

dollars price indices PI1 and PI2 are calculated as follows: 

PI1,t = (PCt / wC,1,t) + (PWt / wW,1,t) + (PSt / wS,1,t),  for t = 1/1982, …, 3/2012,  (A3) 

 PI2,t = (PCt / wC,2,t) + (PWt / wW,2,t) + …         

+ (PSt / wS,2,t) + (PBt / wB,2,t)  for t = 1/1982, …, 12/2010.  (A4) 
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Figure A1. Weights for Price Index 1 (Panel a) and Price Index 2 (Panel b). 
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