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Abstract

This paper examines the relationship between biefard commodity food prices in the U.S.
from a new perspective. While a large body of #itare has tried to explain the linkages between
sample means and volatilities associated with ethemd agricultural price returns, little is known
about their whole distributions. We focus on preathdity in distribution by asking whether
ethanol returns can be used to forecast differartispof field crops returns distribution, or vice
versa. Density forecasts are constructed using iGonal Autoregressive Expectile models
estimated with Asymmetric Least Squares. Forecadtation relies on quantile-weighed scoring
rules, which identify regions of the distributiofiiaterest to the analyst. Results show that both
the centre and the left tail of the ethanol retudis¢ribution can be predicted by using field crops
returns. On the contrary, there is no evidenceetisnol can be used to forecast any region of the
field crops distribution.
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Food versus Fud: Causality and Predictability in Distribution

1. Introduction

The dynamics of field crops prices has been thgestlof broad attention from the media,
public opinion, as well as the scientific communityrecent years. Large world food price
increases and huge price volatilities are generaitgrpreted as problematic for many
developing nations, which are compelled to facehéigcosts to feed large parts of their
populations and have to manage the subsequenticablibstabilities. In addition to the
natural causes of food price rises, such as bacesigrdue to drought and floods, the level
and volatility recently hit by the price of corneanften viewed as the effects of the massive
development of biofuels, ethanol in particular.

The U.S. is the world’s largest producer of cotnl&billion bushel per year. Since 2005, an
average one-third of corn crop production has baigerted from food and dedicated to
ethanol production. The expansion of U.S. biofurgs been induced by a number of distinct
energy and environmental policies. In particulde Environmental Protection Agency’s
2005 Renewable Fuel Standard and the 2007 Enedgpémdence and Security Act (EISA)
are worth mentioning, according to which fuel blersdare obliged to mix a given amount of
eligible biofuels into gasoline. In 2011, the matedtor corn-based biofuels under EISA is
12.6 billion gallons, which increases to 15 billigallons in 2015. These figures imply that
39% of U.S. field corn is used to produce ethabast year, due to a severe drought affecting
more than 65% of farmland in the continental Uigarly half the corn crop has been
directed to produce etharol.

In this paper we examine the causal nexus betwd#eama and corn and other agricultural
commodities, seeking support in favor or against‘#ood versus Fuel” claim that food price
inflation is primarily due to the ethanol productiboom in the U.S..

Our analysis studies the relationship between tloe pf ethanol and the price of field crops
and cattle in Nebraska from January 1987 throughrcMa012* We concentrate on Nebraska
for three main reasons. First, a practical motoratia lengthy monthly time series of ethanol

prices is freely available from the Nebraska Ene@jfice. Given that forecast analysis

! See, among others, Rosegrant et al. (2008), M@leekman et al. (2008), Mitchell (2008), UNCTADO@8),
Weise (2011), Parker (2013), The Economist (2013).

2 As of February 2011, 27 states in the U.S. hadatipg ethanol facilities: lowa, Nebraska and Hig have a
nameplate capacity equivalent to 26.10%, 12.97%%02%, respectively, of the nation’s total (1358i#lion
gallons per year. Source: Nebraska Energy Office).



requires splitting the sample into an estimatiot evaluation period, a sufficiently wide data
coverage is necessary to obtain accurate estimatk$o guarantee that out-of-sample tests
have reasonable power. Second, the relevance afableb production in the U.S. ethanol
market (in 2011 it ranked second both in termsarheplate capacity, 1764 million gallons
per year, and operating production, 1739 millioHage per year) and within the state corn
market (the Nebraska Corn Board has estimatedrinéie 2010-11 marketing year 35% of
Nebraska’s corn production was transformed in ethaMoreover, according to Solomon et
al. (2007), four of the leading ethanol producimgs in the U.S. have distilleries in the state
of Nebraska. Third, several studies have confirrttezl importance of Nebraska for the
purpose of studying the biofuel-food relationship. particular, Serra et al. (2011) and
Blomendahl et al. (2011) have used Nebraska dastutdy nonlinearities in the U.S. corn-
ethanol-oil-gasoline price system and the impacttbfnol plants on surrounding farmland
values. Wixson and Katchova (2012) have testecadgmmetric price transmissions in the
grain and energy markets by relying on the pricetb&éinol in Nebraska. Elobeid and Tokgoz
(2008) have calibrated their model of the U.S. etthanarket using Nebraska price data, as
fully representative of the characteristics of th&. ethanol market.

Many studies have analysed the impact of biofuelsmmmodity food prices. As pointed out
by Zilberman et al. (2012), there are two mainrgtgin the literature on biofuels. The first
relies on time-series econometrics to analyse ith@agdes between biofuel and food prices.
The second, by means of simulation- and theoryebasethods, deals with the impact of the
introduction of biofuels on food prices. Time-sergudies show that the price of biofuels is
positively correlated with the prices of food amels, but that the reverse correlation is very
weak. Simulation-based analyses highlight thatintr@duction of biofuels may affect food
prices and that this effect varies across regioiscaops.

Our paper can be placed in the first strand ofiteeature.

We use time-series methods to analyse causal kskagtween returns on ethanol and field
crops in the U.S. by considering the whole distidruof returns, rather than focusing on few
specific moments such as the mean or the varidigs.new perspective of investigation is
appropriate for at least two reasons. First, sireterns are generally non-normal, their
distribution can be hardly summarized by the meaecond, rational decision makers rely on
density forecasts in order to maximize their exgecttility functions.

We focus on out-of-sample relations to answer tlewing questionsa) Can lagged returns

on ethanol be used to forecast field crops retuoh€an lagged returns on field crops predict



returns on ethanol@) Is the whole distribution of returns predictabt®r, is predictability
limited to some parts of the distribution?

We provide a number of interesting results. Inipalar, ethanol has no predictive power for
field crops. This finding holdsi) in-sample;ii) out-of-sample;iii) for the whole returns
distribution. Moreover, ethanol can be forecastemgilagged returns on field crops. This
result has been obtainad) in-sampley) out-of-sampleyi) for the centre and the left-tail of
the distribution. Finally.vii) there is no evidence of predictability in thehtigail of the
distribution.

While resultsi) andiv) are in line with most of the related literatufiedingsii), iii), v), vi)
andvii) represent fresh new evidence on the biofuels-fetation, which is not supportive of
the “Food versus Fuel” claim.

The rest of the paper is organized as follows.hi@ next Section we briefly review the
literature. In Section 3 we motivate our modellirdpoices and provide economic
justifications for the interpretation of resultdhél dataset is presented in the Section 4, while
the methodology is illustrated in Section 5. Sett® contains the empirical results and

Section 7 concludes.

2. Related Literature

The “Food versus Fuel” claim has been discussatdarempirical literature from two main
perspectives: the assessment of the presence ofrlon relationships between fuel and
agricultural prices, and the investigation of exmste, as well as the direction, of their
causality links. Given the approach followed in @aper, in this section we concentrate on
contributions pertaining to the second strand séaech’

The studies testing the presence and the direafothe relationship between fuel and
agricultural prices deal with a variety of empiticaethods (e.g. structural vs. reduced form
models, linear vs. non-linear models, statistical@aconometric methods) applied to weekly
or monthly spot and futures prices. In generak titérature has tackled the issue of Granger
causality only with in-sample analyses. The majoat the contributions find evidence of
Granger causality running from the prices of fietdps, corn in particular, to the price of
ethanol. This result is robust to the method oflyamis to the sampling frequency and the

type of price.

%We address the reader interested in a broadersafibe literature to Zilberman et al. (2012).



Ubilava and Holt (2010) is the only study that fees on out-of-sample predictability. Using
weekly averages of U.S. futures prices for theque®ctober 2006 - June 2009 and a non-
linear time series model for corn, the authors tadecthat the inclusion of energy prices (oll
and ethanol) in the model does not improve corcepiorecasts.

Zhang et al. (2009) estimate a vector error caoacnodel (VECM) on U.S. weekly data for
corn, oil, gasoline, ethanol, and soybean pricesr ahe period March 1989 through
December 2007. In the pre-ethanol boom period, 1198¥®, the authors find evidence of
Granger causality running from the price of cornetihanol price, whereas a causality
reversal occurs in the boom period, 2000-2007.

Kristoufek et al. (2012b) rely on weekly price d&ba the period between November 2003
and February 2011 to analyze relations betweenuélef(ethanol and biodiesel), their
production factors (corn, wheat, soybeans and sagaj and fossil fuels (Brent crude oil,
German diesel and U.S. gasoline). Short-run Grangesality is found running from corn
prices to ethanol prices.

Zhang et al. (2007) test whether the limit-pric@diyesis can explain pricing patterns in the
U.S. ethanol-fuel market by means of a structuedtor autoregression (SVAR) model
estimated on monthly data from April 1998 to Jul02. The variables included in their
SVAR model are corn, ethanol, MTBE (i.e. methykiteybutyl ether), gasoline prices and
MTBE and ethanol quantities. The results indichtg torn prices Granger cause the price of
ethanol, but not vice versa.

Zhang et al. (2010) use monthly price data for coice, soybeans, sugar, wheat, ethanol,
gasoline, and oil from March 1989 through July 20@&nalyze short- and long-run impacts
of fuels on agricultural commodities in the U.SheTauthors fail to find any evidence of
long-run and short-run Granger causality betweehdnd agricultural commodity prices.
Saghaian (2010) analyzes pair-wise Granger-caysealiations by relying on monthly data
on oil, ethanol, corn, soybean, and wheat priceshi® period January 1996 - December 2008.
The results point to the existence of unidirectiae#ationships running from soybeans and
wheat price series to ethanol, and hence indidad& ¢thanol does not Granger cause
soybeans or wheat price series. Moreover, themsée be a feedback relationship between
corn and ethanol prices. However, the author shbaisthe evidence of causality is stronger
from corn price to the price of ethanol than viarsa; in fact, causality running in the

opposite direction is statistically significant grat the 10% significance level.



Serra et al. (2011) fit an exponential smooth fiteors VECM to monthly U.S. data on
ethanol, corn, oil, and gasoline prices from 199®®08. An increase in ethanol prices is
found to cause an increase in corn prices. Howdirey, also show that corn price hikes, lead
to increases in the price of ethanol. Given thah gyoduction is relatively inelastic, at least
in the short run, an increase in the size of tharetl market will yield corn price increases
that in turn will yield higher ethanol prices.

Kristoufek et al. (2012a) analyze the relationshpswveen the monthly prices of biodiesel,
ethanol and related fuels and agricultural comnneslifcorn, wheat, sugar cane, soybeans,
sugar beets). Their results indicate that in thertsand medium term the price of corn
Granger-causes the price of ethanol, but that tilsere causality running in the opposite
direction. Moreover, the authors show that an iaseein the price of corn positively affects
the price of ethanol and that this effect is reklii short-lived.

Wixson and Katchova (2012) test causality and asgmmprice transmission in the U.S.
with monthly price from January 1995 to Decembet@@or the following commodities:
soybeans, corn, wheat, oil, and ethanol. They #wilence of unidirectional Granger
causality running from returns on corn and soybéamsturns on ethanol.

A different viewpoint on the “Food versus Fuel” déb is offered by Gilbert (2010), who
shows that the 2007-2008 food price increases eamadodly attributed to the growing
demand for grains as biofuels feedstocks. Rathar being market-specific, the 2007-2008
price hikes can be more convincingly explained dsmon factors, such as macroeconomic
and monetary shocks propagating to food pricesutiiroindex-based investment in

agricultural derivatives markets.

3. Modelling Approach

The line of investigation of the “Food versus FuaHim followed in this paper relies on the
implicit assumptions that causality runs from ethlaprice to corn prices and from corn
prices to the price of other corn-based productd, that the amount of arable land is fixed

over the short rufi.

* See Abbott (2012) and Anderson et al. (2008). ébéfiit assumptions characterize the contributions by
Zilberman et al. (2012), who provide a conceptustification of the reason why causality may rumnirfood

to biofuel prices within a partial equilibrium frawork, and by Piroli et al. (2012) who, from a lemgn
perspective, study the impacts of changes in bigftiees on land use changes.



Moreover, our empirical approach is very differérm previous works focusing on the
linkages between ethanol and agricultural commadiykets, at least in two respects.

First, we use out-of-sample Granger causality teAtscommon feature to most of the
empirical literature is to analyze the relationshgtween the price of ethanol and the price of
corn or, more generally, biofuel prices and agtigal prices, using in-sample Granger
causality tests. Nothing is said about the outaofygle performance of the estimated models,
although this approach is statistically more appete to investigate Granger causality
among variables, as originally put forth by Gran(#69). Our paper fills this gap. We run
different tests of predictive ability to compareetforecasting performance of alternative
autoregressive models with exogenous variables @R-X models), against some
benchmark models with no covariates, such as theéora walk with drift. The benchmark
models impose the joint null hypothesis of no-peceability and no-Granger causality.
Therefore, if an AR-X model leads to superior ofisample forecast performance with
respect to the benchmark model, this evidencetespreted as Granger causality running
from the exogenous variable to the dependent Varialihe AR-X regression.

Second, we model and forecast the whole distrinutibreturns on ethanol and field crops
prices. The analysis of the whole distribution eturns, rather than focusing on few specific
moments such as the mean or the variance, is iatorenfor different reasons. First, since
returns are generally non-normal, the mean is fiaadlalid summary of their distribution.
Second, a density forecast of the future outconmes\ariable represents an estimate of the
probability distribution of the possible realizats of that variable over the forecasting
horizon, hence it provides a natural measure ofutheertainty associated with its future
predictions. Third, it can be shown that, with et of few of special cases, rational
decision makers rely on density forecasts in otd@naximize their expected utility functions
(see Granger and Pesaran, 2000). Point forecasisisified only when agents face linear-
guadratic (LQ) decision problems, whereas, for h@nproblems, optimal decision rules
depend on the whole predictive distribution (Pesard Skouras, 2002).

We estimate density forecasts for returns on ethamed field crops prices with Asymmetric

Least Squares (ALS, Newey and Powell, 1987). ALSingilar to Ordinary Least Squares

® A classical example is the maximization of the eotpd utility of an investor wishing to allocates/hier
wealth across risky assets. In this case, poimchsts of the mean and the variance are suffitdesblve the
investor's problem only if his/her preferences dancharacterized with a quadratic utility functiand the
returns’ distribution is arbitrary or, when prefeces are arbitrary, if returns are multivariate malfy
distributed (Huang and Litzenberger, 1998, p. &1dwever, for more general preferences and returns’
distributions, optimal asset allocation requiresngity forecasts of the returns (see Cenesizoglu and
Timmermann, 2008).



(OLS), with the exception that the squared erras ltunction is weighted according to the
sign of the residuals. The solution for the ALSrestor is known as “expectilé”.

Both expectiles and quantiles can be used to desthie distribution of a random variable.
From a computational point of view, direct estiroatiof expectiles has a number of
advantages over the quantile regression approagharticular, quantile regression is based
on an absolute error loss function (known as checkn-lin loss), which is not continuously
differentiable, hence it requires linear programgnmethods (Kroenker and Hallock, 2001).
Conversely, ALS estimates can be computed withraigsttforward application of the
Iterated Weighted Least Squares (IWLS) algorithnevildly and Powell, 1987; and Efron,
1991). Moreover, although the quantile estimatayaserally more robust to outliers than the
ALS estimator, Newey and Powell (1987) have showat the quantile regression approach
can be relatively inefficient for error distributi® which are close to Gaussian.

Expectiles are less immediate to interpret thamtj@s. For this reason, in this paper we
follow Efron (1991) and Granger and Sin (2000) abthin the quantiles by calculating the
proportion of in-sample observations lying below #stimated expectile regression lines. We
then use the estimated quantiles in density fotepso analyse the predictability of the
distributions of returns on ethanol and field crppses.

Expectiles and quantiles allow to investigate thedztability of returns in different regions
of their distribution, such as the centre, onedaiboth tails. This is an additional, innovative
feature of our paper. As highlighted in Sectiontt#® majority of the contributions find
evidence of Granger causality running from thegwiof field crops to ethanol, but not vice
versa. However, these findings are entirely basedmpirical models for the first or second
moments of the variables of interest, which ignbeeissue of predictability in other parts of
their distributions. In our paper we extend thelgsia to the whole distributions of returns,
as well as to specific areas of the distributiotiteothan the first and second moments, by
estimating a sufficiently large number of quantilegh the ALS expectile approach. Our

approach encompasses more traditional contribytiemse the information provided by

® The expectile-based approach has already beeresafully applied to volatility and density forecast
evaluation by Granger and Sin (2000), as well asslnmanagement analyses by Kuan et al. (2009)Taytbr
(2008). Similarly, Cenesizoglu and Timmermann (2088d Pedersen (2010) have studied the predidiabfli

the distribution of stock returns using quantilgression. Isengildina-Massa et al. (2010, 2011) qusentile
regression to construct confidence intervals foeath corn and soybean price forecasts issued byife
Department of Agriculture. Lee and Yang (2012) gtiide Granger causality beyond the conditional mean
between money and income by forecasting conditianantiles. Galvao JR. et al. (2013) study quantile
regression in an autoregressive dynamic framewattk @xogenous stationary covariates applied to équie
returns in the U.K.. Candelon et al. (2013) usen@ea causality in distribution tails to investigaté markets
integration.



different quantiles can also be used to retrievecifig sample moments. Specifically,
location and volatility estimates can be deriveshfrthe median and the interquartile range
(Pearson and Tukey, 1965), while skewness and sartan be calculated using the methods
suggested by Kim and White (2004).

In our paper the estimated density forecasts asduated with the quantile scoring rule
proposed by Gneiting and Ranjan (2011). A scorianlg iis a loss function for density
forecasts, which associates a lower score to arbiettecast. The authors have extended the
guantile scoring rule by assigning more weighth® part of distribution (either centre, tails,
right or left tail) which is of interest for thegearcher. This “flexible” scoring rule is relevant
for a variety of forecasts users. For instance tdiie of the distribution are usually the main
focus of risk managers, while policy makers, inesrtb obtain confidence intervals around
point forecasts, are generally more interestetiéncentre of the distribution.

Finally, we implement the conditional predictiveildy test of Giacomini and White (2006)
to check the statistical significance of the diéiece between the scoring rule of the AR-X
model and the scoring rule of the benchmark model §core function differential). We
analyse both the unconditional and conditional grentince of each model. Unconditional
tests indicate which forecast is more accuratevemage in the past, while conditional tests
use available information to predict which foreaashore accurate in the future.

4. Data

Our dataset comprises five monthly time seriesavhimal spot prices, namely ethanol, corn,
soybeans, wheat and cattle, recorded in Nebraska fanuary 1987 through March 2012
(December 2010 for cattle). The price of ethanohesasured in dollars per gallon, the prices
of field crops (i.e. corn, soybeans and wheatdamominated in dollars per bushel, while the
cattle price is expressed in dollars per hundregimteData sources are the Nebraska Energy
Office for the price of ethanol, and the Nationgrisultural Statistics Service maintained by
the U.S. Department of Agriculture (USDA) for thecgs of crops and cattle. Time-varying
weights based on the dollar value of productiorialtl crops and cattle, sourced from the
USDA database, have been used to construct twe priices which summarize field crops
and cattle price dynamics. The first index includes three field crops prices, while the
second index adds the price of cattle to priceliided in the first price inde.

The price series are shown in Figure 1, while surgratatistics are reported in Table 1.

" More details about the dataset and the construcfiéndices are provided in Appendix Al.



[Figure 1 about here]

[Table 1 about here]

As shown in Figure 1, ethanol prices have expeeédrigvo main phases. The first period,
from 1987 to early 2000'’s, is characterized byggtability and low volatility. In the second
period, from the second half of 2000’s onwards,atitily is higher and prices have a
rollercoaster behaviour. A joint inspection of Higu and Table 1 (Panel a) reveals that the
second period started with a price increase culimgat a record price of 3.58 dollars per
gallon in June 2006. The price of ethanol had aropieak, 2.9 dollars per gallon, in July
2008, just one month after the implosion of thepsite bubble originated in March 2008
(Phillips and Yu, 2011). Descriptive statistics fmrcentage change in prices (i.e. returns) are
shown in Panel b of Table 1. As expected, the uditional distributions of all series is

slightly asymmetric and displays different degrekexcess kurtosis.

5. Density Forecasts with Expectiles

5.1 Expectile models

Our forecasting strategy can be illustrated aoval The variables of interest are ethanol
(ETH), corn (COR), soybean (SOY), wheat (WHE), leaCAT), and two price indexes (PI1,
P12). Variables are indexed by the subscript ETH, COR, SOY, WHE, CAT, PI1, PI2.
Percentage price variations (i.e. returns) on eactable are computed ag= 100x In(P;; /
Pi.1), wherePy is the price of variableé at timet. We are interested in bivariate relations
between returns on ethanol and returns on the otheables, therefore we consider the

following single-equation expectile models:

Gt (WQr1) = Bo(@) + Bu@TeTre1 + Bo(W)ljt1 +B3( ) [rje-a] + & (1a)

Tethe (AQr1)= (@) + (W1 + p(@)retrea +H)s(@retrell + et (1b)

wherej = COR, SOY, WHE, CAT, PI1, PI2 and 2,....To.

10



In models (1a)-(1b),5(w| Qw1) and et (W)Qr1), for w O (0, 1), denote the 16&h
conditional expectile of returns on variahleand ethanol, respectively, where@s; is the
information set available at tintel. The absolute value of returns of the dependanable

is introduced to capture time variation in the doodal distribution of returns.

Models (1a) [(1b)] are similar to the ConditionaltARegressive Expectile (CARE) of Kuan
et al. (2009), the only difference being the inmuasof the additional explanatory variables
Fit-1 and tji-a] [retie1 and teree]]. For this reason, we refer to models (1a)-(BoEARE-X.

Each model (1a) and (1b) (i.e. 12 models totalesimated with ALS and quantiles are
retrieved as the proportion of returns lying bekbw 10Quh fitted expectile curve. The ALS
estimator is the solution of minimizing an asymneeguadratic loss function of the residuals
from models (1a)-(1b). Since this loss functiosasitinuously differentiable in the residuals,
the parameters of models (1a)-(1b) can be estinvaitedWLS 2

Newey and Powell (1987) have shown that if data iagependently and identically
distributed, the ALS estimator is consistent angrgsotically normal. An extension of these
results to stationary and weakly dependent datachms relevant for our paper, has been
provided by Kuan et al. (2009).

Since each model (1a)-(1b) is estimated to maxgleailes with quantilegr = 0.05, 0.10,
0.15, ..., 0.90, 0.95 (i.e. 19 quantiles), 228 semésone-period ahead forecasts are
computed

The size of the estimation sampleTis= 180, which corresponds to 50% of the total number
of observationsT, for the returns on ethanol. For each model arahtije, the vector oH
forecasts is obtained with a rolling window proceduWe start by estimating each model
using observations fromh = 2 tot = To, and calculate forecasts in= To + 1. Then,
observations front = 3 tot = To+ 1 are used to estimate each model and compute the
corresponding forecasts ir= Ty + 2. This algorithm is iterated until forecaststine T are
calculated. The rolling window forecasting scheragsfies the assumptions underlying the
Conditional Predictive Ability (CPA) test of Giacamnand White (2006), whose asymptotic
distribution is obtained for fixedp, andH — . Due to different sample sizes, the forecast
evaluation period varies across commodities. Sipedif, April 1997-March 2012H = 180)

for PI1 and field crops, while April 1997-Deceml2€10 { = 165) for P12 and cattle.

8 We use OLS estimates as the starting values MH.S algorithm and set the convergence criteeiqual to
10™
° This figure excludes the forecasts obtained uiegpbenchmark models.
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One problem that might affect expectile and quanglgression estimates and forecasts is the
violation of the monotonicity condition. In otherovds, estimated conditional quantile and
expectile curves might exhibit some “crossings’d&mker and Xiao, 2006). Although in our
case the incidence of this potential drawback gdigible (i.e. there are only 58 crossings out
of 39900 forecasts, which corresponds to less hé&fo of the forecasts obtained with
CARE-X models), we tackle the problem with an “inga filter”, which corrects
monotonicity violations by substituting crossing RBE-X forecasts with the following

benchmarks (see also Swanson and White, 1995):
Gt (WQr1) = fo(@) + & (2a)

Teth (WQ 1) = (@) + EeThe (2b)

We refer to specifications (2a)-(2b) as the Condtpectile (CE) models. Models (2a)-(2b)
imply that for each variable and expectile the opti forecast irt + 1 is the estimate of the
100ath expectile at time

In-sample and out-of-sample Granger causality estsbe easily calculated in the context of
the CARE-X models (1a)-(1b). For instance, an inysie test of Granger causality running
from variablej to ethanol would involve testing the null hypotisddy: J4(«) = 0 in model
(1b). Conversely, testing the null hypotheldis £i(«) = 0 in model (1a) corresponds to an
in-sample test of Granger causality from ethanolddablej. Moreover, an out-of-sample
Granger causality test requires to compare thecésteng performances of models (1a)-(1b)
with the CE models (2a)-(2b).

Since models (2a)-(2b) assume that returns areedmpable, out-of-sample tests of
predictability can be carried out by asking whicbdals produce the lowest forecast error
loss function. If the lowest loss is associatedntzdels (1a)-(1b), then we can conclude that

returns on ethanol [variabjecan be predicted using returns on varigijethanol].

5.2 Evaluating quantile and density forecasts

We evaluate forecasts by means of the asymmetadragtic loss function:

Lialri, 6o,) = [+ (1-20) X 1(ric -G, < O] X Jric - G, [ (3)

12



whereq, , is the quantile forecast obtained from the ALSneation of CARE-X models (1a)-

(1b) and CE models (2a)-24)=To + 1, ...,T; a=0.05, 0.10, 0.15, ..., 0.90, 0.95; ETH,
COR, SOY, WHE, CAT, PI1, PI2.

For each quantilez, a given CARE-X model produces more accurate &scthan its
benchmark if the average loss (definedlag) = H* X 'i-r011 Lio(.)) of the CARE-X model

is smaller than the average loss of the correspgn@E model.

The quantile scoring rule (QS) of Gneiting et @D11) is the second tool we use for forecast
evaluation. While the asymmetric quadratic lossivdes a picture of the predictive
performance of a model in different parts of th&trbution (i.e. in different quantiles, taken
in isolation), the QS provides a summary of the efgdoverall ability to forecast the whole
distribution (i.e. across all quantiles). Scoringes have the same interpretation as loss
functions: more accurate density forecasts arecadsd to lower scores, less accurate

density forecasts are associated to higher scohesQS can be written as:

QSJ'(rit’ qa,t) =2x [I(rit - éla,t < 0) - ail X (qa,t- rit) (4)

The QS (4) assigns the same weight to all foregasts, independently of their location in
the support of the distribution. Should the focwes dn the tails or on the centre of the
distribution, it would be more appropriate to asateca higher score to the area of interest.

Gneiting et al. (2011) have proposed a weightediorrof the QS given by:

WQSi’(rit' QG,t):V(a)XQSY(ritI éi(x,t)

where v(a) is a weight function that assigns a higher sdorehe desired part of the
distribution. We consider four weighted quantilerss to focus on the following parts of the
distribution: 1) Centrev(a) = a (1 - a@); 2)Tails:v(a) = (2a - 1Y; 3) Left Tail:v(a) = (1 - a)*

4) Right Tail:v(a) = a®. Therefore we have used a total of five scoringstite each CARE-
X model and its corresponding benchmark. Noting tha uniform quantile score (4) is
obtained fonv(ay) = 1,k=1, ...,K = 19,the average score for th¢h CAREX modelis:
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AWQS™ *1= 3 v(6,)xQS, (1., ®)

fort =Ty + 1, ....T. Thei-th CARE-Xmodelis on average more accurate at forecasting the

whole distribution of returns on variakleor some parts of it (e.g. centre, one or both}tails

RE- X i

than its correspondingCE (benchmark) model if:AWQSCA < AWQSCE'i, where

AWQS™ M= YT AWQERE X

t=TO0+1
The CPA statistic of Giacomini and White (2006)seke significance of score differentials,
AS, whereAS = AWQS*™® *- AWQS*®'. The CPA test is very flexible, since it applies t

point, interval, probability or density forecasts fa wide range loss functions and data-
generating processes, while forecasts can be @otghom nested and nonnested models
estimated with parametric, semi-parametric, nonpatec, as well as Bayesian methods.

The CPA test is a Wald-type test statistic thatloamvritten as:

T ’ T (6)
W = H(H -+ Znasj A‘l(H -+ Znasj

t=w+1 t=w+1

whereh; is aq x 1 vector of test functiong) is an heteroscedasticity- and autocorrelation-
consistent estimate of the asymptotic covarianceixnaf h,AS, and the null hypothesis to be
tested isHo: E(N:AS) = 0, fort =Ty + 1, ..., T. Under the assumption that forecasts originate
from “limited memory methods”, such as rolling wows or the fixed estimation sample
forecasting scheme (according to which the sizb@festimation sampldy, is kept constant,
while the size of the evaluation sampite, increases), the CPA test (6) tends tp24), as
H— oo,

Forg =1 andh; = 1, the CPA test collapses to an unconditionstl & predictive ability. In
this case, a rejection of the null hypothesis, tedipvith a negative score differential,
suggests that the CARE-X model is on average mocerate than the CE model. Since
traditional fuels, biofuels and agricultural maskete intertwined, we use a dummy variable

based on net oil price increases (NOPI) to chec¢kdfe are asymmetries in the forecasting
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performance of CARE-X models across quiet and teriiuphases of the energy mark®ts.
For this reason, we sgt= 2 and specifjn; as a function of a constant term and the NOPI
dummy variable. A rejection of the null hypothegigovides evidence that the forecast
differential is statistically different from zerblence, according to the sign of the differential,
it is possible to determine whether, conditionally the state of the oil market, CARE-X

forecasts are more accurate than CE forecasts.

6. Empirical Results

6.1 In-sampleresults
Estimates of CARE-X models (1a)-(2a) for the perdmthuary 1987 through March 2012
(December 2011 for variables CAT and PI12) are shiowiable 2.

[Table 2 about here]

From Panel a), the coefficients associated to lgetirns on ethanol are in the vast majority
of cases statistically insignificant, irrespectied the quantile. Moreover, neither the
magnitude, nor the sign of the coefficients disfday clear pattern across quantiles. For both
price indices the coefficient on lagged ethanounmed is positive in the left tail of the
distribution, then constantly decreases, becomegative in the right tail. Looking at the
CARE-X model for corn, lagged returns on ethanolenaegative coefficients for quantiles
below the median, while positive coefficients abdve median. In the case of soybeans, we
can see that price returns are negatively coritlatéh ethanol and that most of the
coefficients in the right tail of the distributi@me statistically significant only at the margin.
The Bonferroni statistic for testing the joint nhifpothesis that all coefficients associated to
lagged returns on ethanol are zero across quargileported in the last row of Table 2 for
each estimated model. The null hypothesis is regeir both price indices only, due to the
significance of the coefficients estimated withihet extreme quantiles (0.85-0.95).
Interestingly, it is not possible to reject the Inwpothesis for soybeans, which is the only

19 Net oil price increases proxy oil shocks. Follogvidamilton (1996), we construct a dummy variabl@m,
where NOPEL if the spot price of WTI crude oil in months higher than the maximum price recorded during
the previous three years, and N@Blotherwise. The test functidpincludes NOPJ,.
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commodity showing some statistically significaneffwients associated to lagged returns on
ethanol.

In summary, we are unable to find any empiricatience of a solid relation between ethanol
and field crops or cattle. Keeping in mind thatsdindings are against the presence of
bivariate Granger causality running from ethanaoletrns on price indices, corn, wheat and
cattle, there is no reason to expect that ethaarobe fruitfully exploited to make predictions
for these variables.

The lack of causality running from ethanol retutmgield crops returns is consistent with the
literature reviewed in Section 2. However, our tessare more general, since we are allowed
to conclude that returns on ethanol do not proussieful information for forecasting any part
of the distribution of returns on corn and fieldgs.

The pattern of coefficients reported in Panel bYable 2 is completely different. In CARE-
X models with returns on ethanol as the dependanabes, lagged returns on price indices
and field crops are statistically significant folost of the quantiles, while coefficients on
cattle are always statistically insignificant. Abefficients are positive and tend to decrease
and become statistically insignificant as one mofresn the left to the right tail of the
distribution. Price indices and the other field pgcseem to have predictive power for the
centre and the left tail of the distribution of tbanol returns. On the contrary, none of the
exogenous variables is statistically significantléoge quantiles. Finally, the Bonferroni tests
allow to reject the joint null hypothesis of absemd Granger causality for all variables, with
the exception of cattle.

To conclude, there is no evidence of bivariate Gearcausality running from ethanol to field
crops and cattle. Conversely, field crops seemran@er cause ethanol. More precisely, our
results suggest that returns on field crops mightised to forecast the centre and the left tail

of the distribution of returns on ethanol, with #eception of its right tail.

6.2 Forecast Evaluation

The evaluation period for one-month ahead forecgsaas April 1997-March 201H (= 180)
for PI1 and field crops and April 1997-December @ = 165) for PI2 and cattle.

For each quantile and model, we compute the asyrnuggtadratic loss (3), which allows us
to check whether the forecasts obtained with CAREdels are on average more accurate

than the benchmark CE forecasts.
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In Panel (a) of Table 3 we show the asymmetric tptadloss for CARE-X models (1a),
where (lagged) ethanol is the exogenous explanatmigble and returns on variahles the
dependent variable. It is important to remembet #thanol has no in-sample predictive
power for both price indices, cattle and most figldps. When price indices PI1 and P12 and
field crops are considered, the benchmark CE m(@#glleads to an average loss lower than
the average loss calculated on the CARE-X (la)x#sts in 33 cases out of 50. Ten of these
occurrences are associated to the CARE-X modelsedpip soybeans returns, with respect
to which our in-sample analysis has suggested dtf@nol might have predictive power.
CARE-X models (1a) applied to corn returns and pdduce more accurate forecasts that
their corresponding benchmarks for extreme quanth®wever, in general the magnitude of
the loss differentials is negligible.

For P12 and wheat the CE benchmark (2a) is alwageaated to lower losses than the
CARE-X (1a) models. Somewhat puzzling, the CARE-¥del outperforms the benchmark
also for cattle, with respect to which ethanol hasn-sample predictive power.

[Table 3 about here]

Panel (b) of Table 3 presents the asymmetric qtiadosses for ethanol forecasts, that is for
CARE-X models (1b) and corresponding CE benchmgk$ Since field crops have no in-
sample predictive power for the right tail of distition of ethanol returns, we compute for
each quantile two additional forecast models. Tih& {EW-ALL) is an equally weighted
average of all forecasts for ethanol obtained fIOGARE-X models (1b), while the second
(EW-CROPS) is an equally weighted average of faesc#or ethanol obtained from the
subset of CARE-X models which include field crogseaogenous variables.

The benchmark CE models are outperformed 80% otdses. Only in correspondence to
the 0.90 and 0.95 quantiles do the CE models parfmest, confirming that extreme ethanol
price increases cannot be predicted with field srophe combined forecast model EW-
CROPS performs best for some quantiles above thigaméi.e. 0.60, 0.75, 0.80), where lack
of Granger causality is found.

An alternative way of comparing the forecastingf@enance of CE and CARE-X models is
to calculate optimal combining weights. For eachldel@nd quantile, the optimal combining
weights are the estimated coefficients of regrgseealized returns on theth variable on a

constant term and forecasts obtained with CARE-¥ &E models applied to theth
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variable,i = ETH, COR, SOY, WHE, CAT, PI1, PI12. As shown bidit and Timmermann
(2004), when the loss function is specified as &qnd3), the optimal forecast combination
weights can be estimated with IWLS. If the optinc@mbining weight of the forecasts
obtained with CARE-X model (1a)A) is equal to one and the optimal combining wegfht
the forecasts obtained with CE model (2@) (s equal to zero, then the forecasts obtained
with CARE-X model (1a) are more accurate than tiredasts based on the CE benchmark
model (2a). In this sense, CARE-X model (1la) “faseencompasses” CE model (2a).
Analogously, if the optimal combining weight of tfeecasts obtained with CARE-X model
(1b) (¢n) is equal to one and the optimal combining wemjtthe forecasts obtained with CE
model (2b) () is equal to zero, then CARE-X model (1b) “fordemscompasses” CE
model (2b).

Estimated optimal combining weights and statistieats of the null hypotheses=1 (¢41=1)

and @=0 (¢»=0) are reported in Table 4. Results in Panelr{dicate that in most cases the
CARE-X combining weights are statistically diffetefrom unity, suggesting lack of
“forecast encompassing”. Therefore, the test resark supportive of the in-sample absence
of Granger causality running from ethanol to cavheat, price indices and cattle. Once again,
ethanol seems to be useful to forecast some pértseodistribution of soybean returns.
Actually, with the exception of the smallest andy&st quantiles, the null hypothesgs1

and @=0 are never rejected.

[Table 4 about here]

The results reported in Panel (b) have a pencloarttdrecast encompassing”. In the case of
P11 and field crops, the null hypotheggs-1 and¢,=0 cannot be rejected for quantiles from
0.05 to 0.75. Interestingly, for PI1 and P12, whare by construction linear combinations of
different series of returns, the two null hypotleesee not rejected also for the 0.90-th
guantile.

So far, we have analysed the forecasting performawross different quantiles taken in
isolation. Our investigation has highlighted th@t:while ethanol cannot be used to forecast
any part of the distribution of returns on pricdiges, corn, wheat and cattle) pevertheless

it has some predictive power for soybean) field crops can be used to forecast the centre

and the left tail of the distribution of ethanolumns.
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We use the quantile score function and the CPAttestaluate the predictive performance of
each model on the whole distribution, that is jigiaicross quantiles.

The weighted versions of the quantile scoring r@Bs(5) assign a higher score to specific
parts of the distribution. For instance, if oneinigerested on the tails of the distribution,
higher penalty can be attached to forecast ertaas dccur outside the inter-quartile range
and a lower penalty to errors around the median.

The numerical values of the score differentials eegllts of the unconditional (UPA) and

conditional predictive ability (CPA) tests are geated in Table 5.

[Table 5 about here]

The score differentials reported in Panel a) areegaly positive and the UPA and CPA tests
lead to 8 rejections out of 90 comparisons. Thatethanol has in general no predictive
content for (any part of) the distributions of tleéurns on field crops, cattle and price indices.
In Panel b), the average un-weighted (“Uniformgrstardized score differential is negative,
meaning that density forecasts from the CARE-X nhddé) are to be preferred to the
density forecasts from the benchmark CE model [Bbjvever, the UPA test indicates that
the score differential is not statistically diffatdrom zero. Two are the CPA tests reported in
Table 5. The first, CPAL, includes in the test tiort of equation (6) a constant term and the
first lag of the score differential, while the sadotest, CPA2, is conditional on both a
constant term and the NOPI dummy variable. The itiondl tests always reject the null
hypothesis of equal predictive ability, with p-vesulower than 5% (6 out of 12 cases) or
lower than 10% (6 out of 12 cases). These resujgest that corn can be used to forecast the
whole distribution of ethanol.

Although the numerical values of the weighted scdiféerentials are almost invariantly
negative (with the only exception of cattle), in shacases we cannot reject, neither
unconditionally nor conditionally, the null hypo#ig of equal predictive ability for the tails
(taken jointly) and the right tail of the distrilbot. Conversely, the null hypothesis is rejected
most of the times in the centre and left tail af thstribution. These findings are, on the one
hand, not surprising, since different weights gupliad to different parts of the distribution,
while, on the other hand, they contribute to iltatt that conditioning on past forecasting
performances (i.e. CPAl) or on the state of thenatket (i.e. CPA2) is relevant for the

performance of the predictive ability tests.
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The ability of field crops to forecast the centreldhe left tail of the distribution of ethanol
returns is confirmed as well. In particular, forlRAnd field crops, 35 rejections of the null
hypothesis of equal predictive ability are obsereed of 60 cases. The majority of those
rejections is observed in the centre (18.3%) anterieft tail (20%). The predictive ability of
P12 and cattle is extremely poor. Actually, thelrhypothesis of equal predictive ability is
rejected 12 times out of 30 comparisons, most alwvhare due to PI2.

Figure 2 reports different score functions for temsity forecasts of ethanol, obtained with
CARE-X model (1b), where the explanatory variallearn, and compared with the score of

the density forecasts from the corresponding CElm@ark model (2b).

[Figure 2 about here]

The top panel (“Uniform”) displays the unweightedagtile score function. In this case
forecast errors are given the same penalty aloagmiole support of the distribution. The
score of the CE benchmark model (2b) lies abovedtbee of the CARE-X model (1b) for all
guantiles belowr = 0.75. As a consequence, the score differergiakgative in the left tail
and around the centre of the distribution, whilsipee in the right tail. This suggests, once
again, that both the centre and the left tail o thstribution of ethanol returns can be
predicted using corn. The four panels at the botwinfigure 2 show weighted score
functions. The two plots in the left part of theddlie panel illustrate quantile scores that
assign more weight to forecast errors in the ceatict in the left tail of the distribution. In
this case, forecasts obtained from the CARE-X maudel generally superior to forecasts
calculated with the benchmark CE model. The twaspio the right part of the middle panel
show quantile scores which give more weight todast errors in both tails and in the right
tail of the distribution. Focussing our attentianthe latter, the density forecasts obtained
using the CE model (2b) are on average more a&ctiah the predictions generated by the
corresponding CARE-X model (1b).

7. Conclusions

In this paper we have analyzed the predictive igelahip between returns on ethanol, field
crops and cattle in the state of Nebraska. Thenate aim is to seek support in favor or
against the “Food versus Fuel” debate, accordinghimh food price inflation is primarily

due to the ethanol production boom in the U.S.irAportant implication of this view is that
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causality should run from the price of ethanolhe price of corn and, by extension, other
field crops.

Our analysis has been carried out on monthly dgianning January 1987-March 2012.
Density forecasts obtained by estimating differegpecifications of Conditional
Autoregressive Expectile (CARE) models have beaiduated on a sample running form the
late 1997 through the early 2012. This time perisdvery challenging, since it is
characterized by two recessions, very volatile gnenarkets and includes the financial crisis.
Clearly, these events are mirrored in the recemtldpments of the whole U.S. economy,
including the biofuel and agricultural markets ahé price dynamics of the commodities
traded in those markets. Any change that theseetsmrkight have experienced can hardly be
identified by a single moment of the distributioihp@rcentage price variations (i.e. returns).
Rather, it is more likely that, given the complgxénd the magnitude of events such as
recessions and financial crises, a clearer pictafréhe predictive relationships between
ethanol and field crops returns can be obtaineg lsplooking at their entire distributions.

In this paper, instead of focusing on specific motaef the distribution of returns, we have
analysed the whole distribution of returns. Thiswneerspective of investigation is
appropriate for at least two reasons. First, sireterns are generally non-normal, their
distribution can be hardly summarized by the meéaacond, rational decision makers rely on
density forecasts in order to maximize their exgecttility functions.

We have calculated density and quantile forecasisguCARE models with exogenous
variables to address the following question)swhat is the direction of Granger causality
between ethanol, field crops, and cattig?are the observed causality linkages a feature of
the whole return distribution or of some specifartp?iii) can any in-sample evidence of
causality be exploited to improve out-of-samplestasts?

Overall, our results do not support the generaoéthe “Food versus Fuel” debate.

More specifically, both in-sample and out-of-sam@sults confirm and extend the findings
of most of the existing literature. Actually, wadi very limited empirical evidence, if not any
at all, that ethanol Granger causes field cropsatite. Rather, we provide empirical support
for the existence of reverse causality, runningnfifieeld crops to ethanol.

The novelty of our approach is twofold:we have carried out systematic forecast evaloatio
ii) instead of focusing only on returns first and cs&t moments, we have analysed the
predictive relationships between ethanol and fieldps for different quantiles taken in

isolation and for their distributions as a whole.
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Out-of-sample results are consistent with in-samepidence. First, ethanol returns cannot be
used to forecast any part of the distributionset@ims on field crops and cattle. Second, both
guantile and density forecasts for ethanol camifgaved by using returns on field crops as
explanatory variables. Third, these results hold e centre and the left-tail of the

distribution of ethanol returns, but not for itght tail. Finally, the information content of

returns on field crops can be fruitfully exploiteal forecast extreme price decreases, which
are of interest in risk management to compute vatugsk or expected shortfall, as well as to

construct prediction intervals for policy evaluatiexercises.

22



Refer ences

Abbott, P. (2013), “Biofuels, Binding Constraintsxda Agricultural Price Volatility”,
forthcoming in J.P. Chavas, D. Hummels, and B. Wrig@ds.),The Economics of Food
Price Volatility, Chicago: University of Chicago Press

Anderson, D., Anderson, J.D. and Sawyer, J. (200&)pact of the Ethanol Boom on
Livestock and Dairy Industries: What Are They Gotogeat?”,Journal of Agricultural
and Applied Economic$0, 573-579

Blomendahl, B.H., Perrin, R.K. and Johnson, B.B1{@®), “The Impact of Ethanol Plants on
Surrounding Farmland Values: a Case Studghd Economic87, 223-232

Candelon, B., Jis, M. and Tokpavi, S. (2013), “Testing for Grang€ausality in
Distribution Tails: An Application to Oil marketsitegration”,Economic Modelling31,
276-285

Cenesizoglu, T. and Timmermann, A. (2008), “Is tBestribution of Stock Returns
Predictable?”, Working Paper, University of Calr@ at San Diego

Efron, B. (1991), “Regression Percentiles Using msyetric Least Squared Error Loss”,
Statistica Sinicd, 93-125

Elliott, G. and Timmermann, A. (2004), “Optimal lEcast Combinations under General Loss
Functions and Forecast Error Distribution¥urnal of Econometric22, 47-79

Elobeid, A. and Tokgoz, S. (2008), “Removing Disitmms in the U.S. Ethanol Market: What
Does It Imply for the United States and BrazilZimerican Journal of Agricultural
Economic90, 918-932

Galvao JR., A.F., Montes-Rojas, G. and Park, S2018), “Quantile Autoregressive
Distributed Lag Model with an Application to HouBeice Returns”Oxford Bulletin of
Economics and Statistid®%, 307-321

Giacomini, R. and White, H. (2006), “Test of Comalital Predictive Ability”,Econometrica
74, 1545-1578

Gilbert, C. L. (2010), “How to understand high foqulices”, Journal of Agricultural
Economics61, 398-425

Gneiting, T. and Ranjan, R. (2011), “Comparing DignEorecasts Using Threshold- and
Quantile-Weighed Scoring Ruleslournal of Business and Economic Statisfes411-
422

Granger, C.W.J. (1969), “Investigating Causal Retet by Econometric Models and Cross-
Spectral Methods'EEconometriceB7, 424-438

Granger, C.W.J. and Pesaran, H.M. (2000), “Econ@anit Statistical Measures of Forecast
Accuracy”,Journal of Forecastind.9, 537-560

Granger, C.W.J. and Sin, C.-Y. (2000), “Modellitnge tAbsolute Returns of Different Stock
Indices: Exploring the Forecastability of an Altatime Measure of Risk”Journal of
Forecastingl9, 166-187

Hamilton, J.D. (1996), “This is What Happened toe tlOil Price-Macroeconomy
Relationship” Journal of Monetary Economi@&38, 215-220

Huang, C.-F. and Litzenberger, R.H. (199)undations for Financial EconomicBrentice
Hall: New Jersey

23



Isengildina-Massa, O., Irwin, S.H. and Good, D2010), “Quantile Regression Estimates of
Confidence Intervals for WASDE Price Forecastdgurnal of Agricultural and
Resource Economi@5, 545-567

Isengildina-Massa, O., Irwin, S.H., Good, D.L. afdssa, L. (2011), “Empirical Confidence
Intervals for USDA Commodity Price Forecast&pplied Economicd3, 3789-3803

Kim, T.-H. and White, H. (2004), “On More Robusttiggation of Skewness and Kurtosis”,
Finance Research Lettels 56-73

Kuan, C.-M., Yeh, J.H. and Hsu, Y.-C. (2009), “Assieg Value at Risk with CARE, the
Conditional Autoregressive Expectile Modeldturnal of Econometric$50, 261-270

Koenker, R. and Hallock, K.F. (2001), “Quantile Regpion”, Journal of Economic
Perspectived5, 143-156

Koenker, R. and Xiao, Z. (2006), “Quantile Autoreggion”, Journal of the American
Statistical Associatiod01, 980-990

Kristoufek, L., K. Janda, and Zilberman, D. (2012&orrelations Between Biofuels and
Related Commodities Before and During the Foodi€ri& Taxonomy Perspective”,
Energy Economi¢s34, 1380-1391

Kristoufek, L., K. Janda and Zilberman, Z. (2012tNlutual Responsiveness of Biofuels,
Fuels and Food Prices”, CAMA Working Paper n. 3820

Lee, T.-H. and Yang, W. (2012), “Money-Income Gran@ausality in Quantiles”, in D.
Terrell and D. Millimet (eds.)30" Anniversary Edition (Advances in Econometrics,
Volume 30)Emerald Group Publishing Ltd, 385-409

Mercer-Blackman,V., Samiei, H. and Cheng, K. (200Bjofuel Demand Pushes Up Food
Prices”, International Monetary Fund Survey MageaziMF Research, 17 October

Mitchell, D. (2008), “A Note on Rising Food PricedVorld Bank Policy Research Working
Paper No. 4682, July

Newey, W.K. and Powell, J.L. (1987), “Asymmetricdst Squares Estimation and Testing”,
Econometriceb5, 819-847

Parker, T. (2013), “Ethanol: One of Several Facteusling Corn Prices”, Yahoo! Finance,
January, 29. Available athttp://finance.yahoo.com/news/ethanol-one-severetofs-
fueling-194943041.html

Pearson, E.S. and Tukey, J.W. (1965), “Approximdéans and Standard Deviations Based
on Distances between Percentage Points of Frequaumsaes”,Biometrika52, 533-546

Pedersen, T.Q. (2010), “Predictable Return Distrims”, CREATES Research Papers 2010-
38, School of Economics and Management, Univedditarhus

Pesaran, H.M. and Skouras, S. (2002), “DecisioreB&dethods for Forecast Evaluation”, in:
Clements, M.P. and Hendry, D.F. (edsd, Companion to Economic Forecasting
Blackwell: Oxford

Phillips, P.C.B. and Yu, J. (2011), “Dating the EBimne of Financial Bubbles During the
Subprime Crisis”Quantitative Economic8, 455-491

Piroli, G., Ciaian, P. and Kancs, d’A. (2012), “lcabdse Change Impacts of Biofuels: Near-
VAR Evidence from the US’Ecological Economic84, 98-109

24



Rosegrant, M.\W., Zhu, T., Msangi, S. and Sulse (2008), “Global Scenarios for Biofuels:
Impacts and Implications,Review of Agricultural Economic80, 495-505

Saghaian, S.H. (2010), “The Impact of the Oil Seaiw Commodity Prices: Correlation or
Causation?”Journal of Agricultural and Applied Economidg, 477-485

Serra, T., Zilberman, D., Gil, J.M. and GoodwinKB(2011), “Nonlinearities in the U.S.
Corn-Ethanol-Oil-Gasoline Price SystemAgricultural Economicgl2, 35-45

Solomon, B.D., Barnes J.R. and Halvorsen, K.E. 7200Grain and Cellulosic Ethanol:
History, Economics, and Energy Policiomass and Bioener@Al, 416-425

Swanson, N. and White, H. (1995), “A Model-Seleatidpproach to Assessing the
Information in the Term Structure Using Linear Mtsdand Artificial Neural Networks”,
Journal of Business and Economic Statisli8s265-275

Taylor, J.W. (2008), “Estimating Value at Risk aBapected Shortfall Using Expectiles”,
Journal of Financial Econometrid®, 231-252

The Economist (2013), “Fields of Gold”, February"237

Ubilava, D. and Holt, M. (2010), “Forecasting Cdrmices in the Ethanol Era”, mimeo,
Department of Agricultural Economics, Purdue Unsiigr

UNCTAD, United Nations Conference on Trade and Dmyment (2008), “Addressing the
Global Food Crisis: Key Trade, Investment and Comwlityo Policies in Ensuring
Sustainable  Food  Security and  Alleviating  Poverty” Available  at:
http://www.unctad.org/en/docs/0sg20081_en.pdf

Weise, E. (2011), “Ethanol Pumping Up Food PricagSA TODAY.com, February, 14.
Available at: http://usatoday30.usatoday.com/money/industried/fl 1-02-09-corn-
low N.htm

Wixson, S. E. and Katchova, A.L. (2012), “Price Asyetric Relationships in Commodity
and Energy Markets”, mimeo. Paper presented atlf# European Association of
Agricultural Economists, Dublin, Ireland

Zhang, Z., Lohr, L., Escalante, C. and Wetzstein,(2010), “Food Versus Fuel: What Do
Prices Tell Us?”Energy Policy38, 445-451

Zhang, Z., Lohr, L., Escalante, C. and Wetzstein,(2009), “Ethanol, Corn, and Soybean
Price Relations in a Volatile Vehicle-Fuels Markdihergies2, 320-339

Zhang, Z., Vedenov, D. and Wetzstein, M. (2007)ariGhe U.S. Ethanol Industry Compete
in the Alternative Fuels Market?Agricultural Economic87, 105-112

Zilberman, D., Hochman, G., Rajagopal, D., SextBn,and Timilsina, G. (2012), “The
Impact of Biofuels on Commodity Food Prices: Assamst of Findings”,American
Journal of Agricultural Economiggorthcoming

25



Tables & Figures

Table 1. Descriptive Statistics: January 1987 - Decembed 2d&rch 2012

Panel (a): Prices

PI1 PI2
ETH (CAT excl.) (CAT incl.) COR SOY WHE CAT
Mean 1.53 102.63 347.25 2.70 6.71 3.84 76.52
Coef. Var. 0.35 0.51 0.28 0.40 0.33 0.38 0.15
Min 0.89 47.46 215.08 1.43 4.00 1.99 58.60
Date Min 01/1987  01/1987 01/1987 02/198710/2001 11/199909/1998
Max 3.58 287.70 723.11 6.93 13.30 9.84 104.00
Date Max 06/2006 06/2011 12/2010 08/201108/2008 03/200812/2010
Panel (b): Returns
PI1 PI2
ETH (CAT excl.) (CAT incl.) COR SOY WHE CAT
Mean 0.09 0.15 0.06 0.09 0.05 0.08 0.19
Coef. Var. 82.05 38.80 55.55 60.25 93.56 66.21 7.6
Skewness 0.40 0.53 0.37 -0.62 -0.23 -0.54 0.02
Kurtosis 4.26 10.76 5.79 6.60 4.81 6.57 451

Notes CAT = cattle; COR = corn; ETH = ethanol; PI1 = prindex 1; P12 = price index 2; SOY = soybean; WHheat.
The time period spanned by the monthly nominal gpimte of CAT and PI2 is January 1987-December 20#iile the
monthly nominal spot prices of COR, ETH, SOY, WHE &itl are observed from January 1987 to March 2012.
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Table 2. Coefficient Estimates: March 1987 - December 2Bthtth 2012

Panel a) Does ETH Granger Cause varifble

a PI1 PI2 COR SOY WHE CAT
0.05 0.156 0.022 -0.046 0.001 0.041 -0.036
0.10 0.073 0.022 -0.074 -0.047 0.000 -0.015
0.15 0.052 0.018 -0.065 -0.054 0.004 -0.004
0.20 0.036 0.016 -0.053 -0.054 0.005 -0.002
0.25 0.028 0.014 -0.044 -0.053 0.013 0.000
0.30 0.016 0.010 -0.040 -0.051 0.018 0.001
0.35 0.007 0.008 -0.034 -0.052 0.023 0.002
0.40 -0.001 0.005 -0.029 -0.053 0.026 0.004
0.45 -0.006 0.002 -0.025 -0.054 0.028 0.007
0.50 -0.011 0.001 -0.020 -0.056 0.030 0.008
0.55 -0.018 -0.001 -0.016 -0.058* 0.029 0.011
0.60 -0.029 -0.003 -0.011 -0.061* 0.029 0.014
0.65 -0.037 -0.006 -0.005 -0.063* 0.029 0.016
0.70 -0.048 -0.013 0.001 -0.065* 0.027 0.022
0.75 -0.061 -0.018 0.005 -0.067* 0.027 0.026
0.80 -0.086 -0.026 0.012 -0.071* 0.024 0.034
0.85 -0.113* -0.039 0.026 -0.081* 0.014 0.041
0.90 -0.174%*= -0.072* 0.029 -0.095** 0.010 0.049
0.95 -0.362%** -0.168*** 0.001 -0.119* -0.016 0.087
Bonferroni 0.002*** 0.015** 1.000 0.471 1.000 0.409
Panel b) Does variabjegGranger Cause ETH?

i
a PI1 PI2 COR SOY WHE CAT
0.05 0.280%*** 0.422%* 0.212** 0.333**= 0.313%** 0224
0.10 0.234x** 0.388*** 0.248*** 0.313%** 0.273**= 0.157
0.15 0.199%** 0.311%*= 0.250%** 0.316%** 0.229%*= 0.082
0.20 0.177%** 0.253*** 0.244%* 0.299%** 0.178* 0060
0.25 0.158%** 0.224%**= 0.242%* 0.285*** 0.157* 0051
0.30 0.1447* 0.187* 0.238*** 0.273**= 0.144** 0.9
0.35 0.137* 0.175* 0.234#**= 0.255%** 0.138* 0.034
0.40 0.132* 0.167 0.229%** 0.245%*= 0.135** 0.030
0.45 0.127* 0.160 0.225** 0.231** 0.132** 0.027
0.50 0.122* 0.154 0.219** 0.222** 0.131* 0.024
0.55 0.118 0.150 0.214* 0.213* 0.130 0.016
0.60 0.114* 0.148 0.210** 0.205** 0.131** 0.012
0.65 0.112** 0.148 0.201** 0.197** 0.132** 0.010
0.70 0.110** 0.149 0.193** 0.188** 0.131** 0.015
0.75 0.108* 0.151 0.187** 0.183** 0.131** 0.024
0.80 0.105* 0.152 0.178** 0.178** 0.134* 0.024
0.85 0.104 0.153 0.166 0.157 0.138* 0.008
0.90 0.114 0.170 0.156 0.138 0.141 -0.031
0.95 0.123 0.073 0.105 0.060 0.167 -0.156
Bonferroni 0.000%** 0.000%** 0.001*** 0.006%** 0.0@*** 1.000

Notes See notes in Table 1. In Panel a) the estimataiehis (1a), where the dependent variable isehems on variablg In Panel b) the
estimated model is (1b), where the dependent Jariatihe returns on ethanol. Entries of the talkethep-values for the null hypothesis
of no Granger Causality (GC) running from ethawoVariable j (Panel a) and from variableto ethanol (Panel b). The null hypothesis is
Ho: B =0in model (1a) for Panel a), ét;: 4 = 0 in model (1b) for Panel b). Headers repontedalumna indicate the quantiles estimated
from expectiles. “Bonferroni” indicates the Bonfami bound for the joint null hypothesis of no GGass quantiles. * (**) [***] denotes
rejection of the null hypothesis of no GC at 0.2®5%) [ 0.01] significance level.
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Table 3. Asymmetric Quadratic Loss

Panel a) CARE-X model (1a) vs CE model (2a)

ila 0.05 0.10 0.25 0.40 0.50 0.60 0.75 0.80 0.90 0.95
PI1 11.147* 15.129* 22.697* 27.272 28.359 28.802 .0Z8 25.333 19.909 16.378
CE(1) 11.225 15.281 22.816 27.194* 28.129* 28.394* 26.338* 24.501* 18.804* 15.711*
PI2 3.346 4.832 7.676 9.004 9.391 9.475 8.759 8.218 6.429 4.682
CE(2) 3.270* 4.757* 7.454* 8.728* 9.036* 9.047* 2 7.654* 5.859* 4.398*
COR 7.413* 10.227* 14.372 15.863 15.857 15.265 a3.1 11.949 8.353* 6.001*
CE(1) 9.013 10.468 14.263* 15.698* 15.649* 15.093* 12.977* 11.812* 8.408 6.063
SOy 7.545* 10.014* 13.827* 15.126* 15.094* 14.424* 12.157* 11.006* 7.753* 5.308*
CE(1) 7.768 10.655 14.986 16.323 16.183 15.414 0B2.8 11.472 8.062 5.711
WHE 13.400 17.019 25.234 28.608 29.453 28.795 75.26  23.531 16.979 11.957
CE(1) 11.032* 15.400* 23.421* 26.618* 27.425* 26081 23.798* 22.162* 16.416* 11.714*
CAT 2.515* 3.509* 4.716* 5.141* 5.232* 5.149* 4.645 4.294* 3.369* 2.590*
CE(2) 2.583 3.677 5.070 5.583 5.656 5.518 4.942 174.5 3.400 2.735
Panel b) CARE-X model (1b) vs CE model (2b)

ila 0.05 0.10 0.25 0.40 0.50 0.60 0.75 0.80 0.90 0.95
PI1 13.286* 19.956 31.947 38.318 40.196 39.942 55.0 33.865 24.773 18.033
PI2 14.224 21.905 35.671 42.222 44.073 43.607 89.04 36.460 26.107 18.204
COR 13.754 20.544 33.330 39.237 40.890 40.322 26.60 34.162 25.318 18.371
SOy 13.404 19.545* 31.809* 37.852* 39.553* 39.452 5.752 33.505 25.113 18.084
WHE 13.823 20.186 32.293 38.525 40.275 40.068 36.01 33.567 25.092 17.854
CAT 14.673 22.108 36.020 42.490 44.196 43.752 .07 36.185 25.378 17.966
CE(1) 15.915 24.804 37.023 42.991 44.052 42.985 2837. 34.453 24.414* 17.357
CE(2) 15.886 24.849 38.869 44.885 46.294 45.296 2989. 36.186 24.992 16.803*
EW-ALL 13.468 20.071 32.369 38.411 40.174 39.892 .986 33.638 24.790 17.734
EW-CROPS 13.420 19.718 31.882 37.872 39.611 39.377* 35.627* 33.282* 24.867 17.748

Notes:See notes of Table 1. The table reports the asyriecngriadratic loss function for each estimated etoth Panel a) the model of interest is (1a), whee dependent variable is the returns on varjalife
Panel b) the model of interest is (1b), where tgetident variable is the returns on ethanol. Hea@eorted in rove indicate the quantiles estimated from expectilég benchmark forecasts are obtained from the
CE models (2a) (Panel a) and (2b) (Panel b), aacetiually-weighted forecast combinations (EW). Tawe the evaluation periods: 1) April 1997-March 2@ = 180) for PI1 and field crops; 2) April 1997-
December 2010H = 165) for P12 and CAT. CE(1) and CE(2) refer 1 @odels evaluated in period 1) or period 2), retpely. EW-ALL and EW-CROPS are the EW combinerkfasts based on all variables and
field crops only. In Panel a) an asterisk identitlee best model (i.e. lowest loss model) for eartablej and each quantile. In Panel b) an asterisk identifies the best mémtetach quantiler.
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Table 4. Optimal Combining Weights: CARE-X and CE Forecasts

Panel a)
a

0.05 0.10 0.25 0.50 0.75 0.90 0.95
i CARE-X CE CARE-X CE CARE-X CE CARE-X CE CARE-X CE ARE-X CE CARE-X CE
PI1 0.423* -0.518 0.970 -1.887%10.945 -1.886 | 0.295 2.299 -0.243* 2.287 -0.982*2.678** |-0.790*** 0.765
PI2 0.278*  -4.422***|0.018 -1.196 | -0.003** -6.054*F0.117 0.814| -0.039** 3.797*% -0.262** 4.745*** -03D** 1.554**
COR 0.505*  0.732 0.459*** 1.396 0.475** 0.607 B4** 1.951 | 0.449** 1.852 0.428**  1.728 0.092*** (399
SOy 0.246*+* 0.023 0.580 -1.292 | 0.740 -2.661 0.730 -0.024|0.699 -0.084 | 0.519* 0.216 0.290**  0.844
WHE -0.706*** 0.448 -0.634*** -0.149 | -0.356*** -2.326 | -0.173** -0.678-0.091*** 0.761 0.203* 0.549 0.358 -0.072
CAT 0.577* -0.064 0.766 -6.602| 0.975 -3.581 0.938 0.936|0.847 -1.685 | 0.457 -5.537*0.374**  -2.475**
Panel b)

a

0.05 0.10 0.25 0.50 0.75 0.90 0.95
i CARE-X CE CARE-X CE CARE-X CE CARE-X CE CARE-X CE ARE-X CE CARE-X CE
PI1 0.847 -0.142 0.930 -0.394| 1.044 -0.14p  1.016 133, 0.770 0.406 0.293 0.660 0.161**  0.838
PI2 0.702 1.100* 0.865 0.402 0.981 -0.02%5 0.889 36.10.621 0.187 0.198 0.393 0.193* 0.279
COR 0.751 0.356 0.947 -0.310[ 0.900 -0.20f  0.788  54/10.597 0.345 0.183* 0.618 0.053*  0.714
SOy 0.761 0.040 0.878 -0.102| 0.978 -0.144  0.988  8@.10.808 0.427 0.163* 0.604 0.036**  0.705
WHE 0.774 -0.063 0.966 -0.515| 1.103 -0.196 1.038 088®. 0.790 0.455 0.270* 0.751 0.201*  0.830
CAT 0.655**  0.937 0.856 0.076 0.854 -0.107 0.753 050.| 0.604 0.069 0.270 0.340 0.177* 0.344

Notes:See notes of Table 1. In Panel a) CARE-X and Clicéte models (1a) and (2a) respectively, whereddpendent variable is the returns on varigble Panel b) CARE-X and CE indicate models (1k) an
(2b) respectively, where the dependent variabiledgeturns on ethanol. Headers reported undéalfeta indicate the quantiles estimated from expecthasnbers reported in Panel a) are the combining hiteig

and g estimated from the regression modgl= ¢ + @r,“""=*+ @r;°F+ ¢, wherer; are actual returns from variakjlery

CARE-X

are forecasts from CARE-X model (1a) antf are forecast from CE model (2a).

Coefficients@, @ and @ are estimated with Iterated Weighted Least Squ#frése single null hypotheseg=1 andg=0 are not rejected, then forecasting with CARE-¥del (1a) is more accurate than forecasting
with CE model (2a). * (**) [***] denotes rejectionf each single null hypothesis at 0.10 (0.050[LDsignificance level. In Panel b) CARE-X and @Hicate models (1b) and (2b) respectively, wheeedpendent
variable is the returns on ETH. Numbers reporteBanel b) are the combining weightsand ¢ estimated from the regression modgh = (b + (AretHc ="+ (et + emr, Wherereny are actual returns from
ETH, rers "5 are forecasts from CARE-X model (1b) ang F are forecast from CE model (2b). Coefficiegits ¢4 and (s are estimated with Iterated Weighted Least Squéfréiee single null hypotheseg=1
and ¢,=0 are not rejected, then forecasting with CARE-¥dei (1b) is more accurate than forecasting with datlel (2b). * (**) [***] denotes rejection of e&csingle null hypothesis at 0.10 (0.05) [ 0.01]
significance level.
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Tableb. Density Forecasts: Score Function Differentiald @RA Tests

Panel a) Does ETH help forecasting varigBle

Weights: Uniform Weights: Center Weights: Tails elhts: Left Tail Weights: Right Tail
i UPA CPA1 CPA2 UPA CPA1 CPA2 UPA CPAl1 CPA2 UPA CPA1 CPA2 UPA  CPAl CPA2
PI1 0.023 0.023 0.023 0.014 0.014 0.014 0.049 0.049.049 -0.032 -0.032  -0.032 0.080 0.080 0.080
PI2 -0.016 -0.016 -0.016| -0.025 -0.025 -0.025 0.011014 0.014 -0.003 -0.003 -0.003% -0.015 -0.015 .016
COR 0.043 0.044 0.043*| 0.045 0.045 0.045¢ 0.034 39.0 0.034* | 0.021 0.021 0.021 0.058 0.058 0.058*
SOy -0.064 -0.064 -0.064| -0.063 -0.063 -0.0683 -0.08.061* -0.061 | -0.061 -0.061 -0.061 -0.056 -0.056-0.056
WHE 0.099 0.099 0.099 0.092 0.092 0.092 0.108 0.10®.108 0.056 0.056 0.056 0.132* 0.132* 0.132
CAT -0.082 -0.082 -0.082 | -0.086 -0.086 -0.08¢ -6.050.056 -0.056 | -0.105 -0.105 -0.105 -0.041 -0.0410.041
Panel b) Does variabjehelp forecasting ETH?

Weights: Uniform Weights: Center Weights: Tails igres: Left Tail Weights: Right Talil
i UPA CPA1 CPA2 UPA CPA1 CPA2 UPA CPAl1 CPA2 UPA CPA1 CPA2 UPA CPAl CPA2
PI1 -0.135*  -0.135* -0.135**|-0.147* -0.147** -0.147*|-0.095 -0.095 -0.095| -0.173**0.173** -0.173** |-0.045 -0.045 -0.045
PI2 -0.097  -0.097* -0.097* -0.111  -0.111* -0.111*0.855 -0.055 -0.055| -0.138* -0.138 -0.138% -0.0160.016* -0.016
COR -0.102  -0.102* -0.102*| -0.111  -0.111**0.111**|-0.065 -0.065 -0.065| -0.147* -0.147* -0.147* -081 -0.018* -0.018
SOy -0.163** -0.163** -0.163* | -0.179** -0.179** -0.179* | -0.107 -0.107 -0.107| -0.189*:0.189** -0.189** |-0.073 -0.073 -0.073
WHE -0.143*  -0.143** -0.143** | -0.155** -0.155** -0.155**|-0.103 -0.103 -0.103 | -0.178**0.178* -0.178** |-0.055 -0.055 -0.055
CAT -0.064  -0.064* -0.064*4-0.073 -0.073* -0.073*%-0.036 -0.036 -0.036| -0.105 -0.105 -0.105f* 0.003 .003 0.003

Notes:See notes of Table 1. This table reports standeddjuantile weighted score function different{@$), as defined in Section 5.2.

Weights are usedatuate score differentials in the Centre, Tailstif, Left

Tail and Right Tail of the distribution. The optiéWeights: Uniform” considers the unweighted distiiion. In Panel a) negative numbers (A8<0) indicate that the score function of CARE-X miofi&) is on
average lower than the score function of CE mazi&g).(In Panel b) negative numbers (A&<0) indicate that the score function of CARE-X miodd) is on average lower than the score functib@E model (2b).
Asterisks indicate rejection of the null hypotheasfithe CPA test, namebhi,: E(AS)=0. * (**) [***] denotes rejection of the null hypthesis at 10% (5%) [1%)]. A rejection of the natupled withAS<O, indicates that
CARE-X forecast are on average more accurate tliafof@casts for a given part of the distributiortteé dependent variable. UPA indicates the uncmmdit predictive ability test, whege1 andh=1 for anyt.
CPAL1 is the CPA test whep2 andh,=(1,AS.;). CPA2 is the CPA test whep2 andh,=(1, NOPL,), as defined in note 16.
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Figure 1. Prices: Ethanol, Indices, Field Crops and Catilgrént dollars)
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Figure 2: Quantile Score Functions for Ethanol Forecasts
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Notes:This figure shows average weighted quantile storetions for ethanol forecasts obtained with eiguat(1b) and (2b) and corn as the explanatonatséei A continuous line identifies scores assoditte
density forecasts from CARE-X model (1b), whileaskl-dotted line is used for density forecast frdfhb@nchmark model (2b). CARE-X forecasts are preteto CE forecasts if CARE-X score lies below CE
score.
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Appendix

Table Al. Data description

Series ID Description Unit Frequency Time Peri@burcé
PE Ethanol: Average Rack Prices  Dollars per Monthly Jan/1982 - NEO
F.O.B. Omaha, Nebraska Gallon Mar/2012

PC Corn (Grain): Price Received Dollars p&tonthly Jan/1982 - USDA
Bushel Mar/2012

PS Soybeans: Price Received Dollars pdonthly Jan/1982 - USDA
Bushel Mar/2012

PW Wheat: Price Received Dollars péfonthly Jan/1982 - USDA
Bushel Dec/2010

PB Cattle (>500 LBS): Price ReceiveBollars per Monthly Jan/1982 - USDA
CWT’ Mar/2012

YC¢ Corn (Grain): Production Dollars Yearly 1982-2012JSDA

YS* Soybeans: Production Dollars Yearly 1982-2012 USDA

YW*¢ Wheat: Production Dollars Yearly 1982-2012 USDA

YB© Cattle (Incl Calves): Production Dollars Yearly 8B32012 USDA

Notes (a) NEO = Nebraska Energy Office; USDA = U.S. Bement of Agriculture - National Agricultural Stgtics Service; BLS =
Bureau of Labour Statistics; AC = Author's Calcigias; (b) CWT = hundredweight; (c) The value forl2ds obtained as a cubic trend
forecast; (d) Yearly observations are obtainedvasages of monthly data (i.e. CPIMW).

The production variables described in Table A1 hasen used to construct two commodity
price indexes. The first (PI1 in the paper) is fedmsing percentage price variations of corn,
wheat and soybeans; the second (PI2 in the papeddes also cattle prices. Both indices

have been constructed by averaging prices withymtimh based weights of the form:

Wit =Y/ (YC+ YW+ YS), forj=C, S, Wand =1982, ..., 2012 (AL

Wios = Yig/ (YC + YW, + YS + YBY, fori =C, S, W, B and = 1982, ..., 2010 (A2)

Given that production variables are recorded atlydeequency, we constructed monthly
observations by assuming constant weights withenyar (e.gw; 1,1/1082= Wj,1,2/1982= ... =

Wi 1,12/1982 Where /1982 indicates the r-th month of year2)98

Weights calculated using current dollar productiata are displayed in Figure Al. Current

dollars price indices PI1 and PI2 are calculatefbbows:
Plit= (PG/wcay) + (PW/wway) + (PS/wsyy), fort=1/1982, ..., 3/2012, (A3)

Pht= (PG/wcz2p) + (PW/ Way2p) + ...
+ (PS/Wes) + (PB / Wa2p) fort=1/1982, ..., 12/2010. (Ad)
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Figure Al. Weights for Price Index 1 (Panel a) and Price x2i¢Panel b).
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