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Abstract

Within the much broader framework of global interest, the dilemma concerning the real

impact of mode of transport on the spread of COVID-19 has been a priority for transport

stakeholders and policy-makers. How dangerous is it to move around a certain territory? Does

the danger depend on the mode of transport? By considering a novel and detailed dataset at

the level of local labour markets, we analysed the spatial association between the propensity

to use public transport and excess mortality in Italy attributable to the spread of COVID-19.

We found that places characterised by larger commuting flows exhibit higher excess mortality,

but observed no significant spatial association between excess mortality and transit usage. Our

results were obtained by considering a wide range of heterogeneity in the estimation of quantile

regressions across a variety of specifications. Although we do not provide a definitive answer

concerning the risk associated with transit use, our analysis suggests that mobility, not modal

choice, should be considered a main driver of the contagion.
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1. Introduction

Mobility and population density are among the most distinguishing features of contemporary

cities, at least in the most developed parts of the world. The outbreak of COVID-19 is now

threatening this development model, since policy-makers are attempting to curb the spread of

the epidemic using, among other options, social distancing and restrictions on mobility. The

effectiveness of these measures has been extensively examined, and there is consensus regarding

their importance in reducing the speed of diffusion of the virus (Hsiang et al., 2020; Li et al.,

2020). However, policies designed to contain virus transmissions are very heterogeneous, since

they may involve (among others): school closures, workplace closures, cancellations of public

events, restrictions on gathering size, closures of public transport, stay-at-home requirements
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and restrictions on internal movements (Hale et al., 2020). Public transport, in particular, has

suffered capacity restrictions designed to both reduce individual mobility and support social

distancing, though empirical evidence on the transmission of the virus through public transport

networks is very limited.

In this article, we aim to contribute to the ongoing policy debate by investigating the spatial

association between transit1 usage and the diffusion of COVID- 19 in Italy, one of the countries

most severely hit by the first wave of the pandemic.

Despite growing evidence of the crucial role played by mobility and a wide public debate on

the criticalities of supply constraints and their economic impact on transport firms, there is no

evidence supporting a relationship between public transport use and the spread of COVID-19.

To investigate the association between transit use and the diffusion of the disease, we consider

a novel dataset on excess mortality at the level of local labour markets (LLMs), since the

spatial extent of these territorial units is based on the geography of commuting flows2. Indeed,

such “functional regions” (i.e., aggregations of multiple neighbouring municipalities) are defined

as “self-contained” labour markets in which approximately 75% of residents also work within

the market borders, such that the resident population coincides as closely as possible with the

working population, and only a minority of individuals commute to and from the area (De Blasio

and Di Addario, 2005). Thus, the boundaries of the LLMs do not reflect any administrative

principles; rather, they are shaped by social and economic relations, which makes them very

informative for analysing overall mobility patterns as a whole (Monte, 2020).

The spread of COVID-19 is measured by daily excess mortality between 1 January and 30

June 2020, a range spanning from nearly two months before to nearly two months after the

most critical part of the pandemic cycle. Then, we measure transit usage using on data from

the latest country-wide assessment of mobility for Italy, conducted in 2011. Our methodology

combines these variables in a model estimated with panel quantile regressions to allow for the

wide heterogeneity of the impacts of mobility and transit usage on the spatial diffusion of the

virus.

Our findings point to a statistically weak association between COVID-19 diffusion and transit

usage. In particular, we did not find that places in which commuters were more prone to use

public transport were more severely affected by the epidemic. Regardless of the type of transport

use, however, our empirical analysis does confirm that the primary contributor to the first wave

of the pandemic was the intensity of people’s movements. Although we cannot exclude that

virus transmissions may occur on public transport, our findings suggest that policies aiming to

contain the diffusion of the virus should address mobility per se, not necessarily individuals’

choice of transport mode.

The remainder of the article is organised as follows. Section 2 analyses the literature. Section

1Note that throughout the rest of the article, we refer to transit as a synonym of public transport.
2For instance, the number of Italian LLMs decreased from 784 in 1991 to 686 in 2001 and, then, to 611 in

2011, in accordance with the commuting flows recorded by national censuses.

2



3 briefly summarises the timeline of the COVID-19 crisis in Italy. Section 4 describes the data

used in the analysis. Section 5 discusses the empirical strategy and our main results and presents

some robustness checks. Section 6 concludes.

2. Review of the literature

The relationship between transit usage and the diffusion of COVID-19 has not yet been

thoroughly investigated in the literature. For obvious reasons, contributions to COVID-19

research are all recent and are appearing frequently and consistently within the major scientific

journals.

Thus far, one strand of research has investigated whether travel behaviours have changed dur-

ing the pandemic, with findings generally answering this research question in the positive. De Vos

(2020) prediction that travel demand would drop dramatically and people would travel less on

public transport was quickly confirmed. For instance, in the city of Chicago, Shamshiripour

et al. (2020) found an unsurprising increased tendency to work from home during the pandemic

and a change in the perceived risk of using various travel modes. Their results showed that

personal vehicles had the lowest perceived risk of exposure, while transit the highest3. Similar

perceptions were also detected in the Netherlands (de Haas et al., 2020), where people exhib-

ited more positive feelings towards cars and far more negative feelings towards collective means

of transport. Huge drops in transit use have been reported in some Spanish cities, such as

Santander (Aloi et al., 2020) and A Coruña (Orro et al., 2020). A similar shift from public

transport to individual modes has been observed in New York and across the UK, with trav-

elers shifting particularly towards bike-sharing systems (Teixeira and Lopes, 2020) and driving

(Hadjidemetriou et al., 2020), respectively. Such dynamics have been more pronounced in com-

pact urban cities, where Hamidi and Zandiatashbar (2020) found a higher reduction in trips to

grocery stores and transit stations in the US.

To the best of our knowledge, there have been only two attempts to correlate transit usage

with COVID-19 infections: First, Sá (2020) found that areas in England and Wales in which

larger shares of the population use public transport experienced more COVID-19 infections (but

not higher mortality rates) per 100 000 inhabitants. Second, Lei et al. (2020) developed a model

indicating that when the loading level decreases to 10% of the average level, possible infections

in most cases are less than 1, proving the effectiveness of current urban rail transit passenger

control strength.

In parallel, another strand of research has investigated the impact of lockdown restrictions

on mobility as a whole - and, in turn, on the diffusion of the contagion - by relying on various

geolocation and mobile phone data sources. In particular, Fang et al. (2020) identified that the

lockdown of the Chinese city of Wuhan reduced its inflows by 77% and its outflows by 56%, while

3Usually, and in the absence of pandemics, public transport is rated much more positively than car driving
when it comes to safety issues (Woods and Masthoff, 2017).
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Glaeser et al. (2020) estimated for four major US cities a 20% average reduction in COVID-19

cases for every 10% drop in mobility.

In the Italian context, Pepe et al. (2020) studied the change in the structure of provinces’

origin-destination matrix before and after the nation-wide lockdown and estimated that mobility

restrictions cut total trips in half. In an analysis of intercity and local mobility patterns during

the outbreak, Beria and Lunkar (2020) found a trend towards relocation from cities to urban

belts, while Caselli et al. (2020) estimated that the lockdown reduced mobility among local

labour markets by 7%.

In addition, several studies have shown that both human mobility and the structure of the

network of commuting flows played a crucial role in spreading the disease: Cintia et al. (2020)

highlighted a striking relationship between the negative variation of mobility flows and the net

reproduction number (Rt) of the virus in all Italian regions; Iacus et al. (2020) showed that

mobility can explain from 50 to 90% of excess mortality across Italian provinces; while Borsati

et al. (2020) found that if commuting patterns between municipalities had been 90% of the real

ones, Italy would have suffered approximately 2 300 fewer fatalities during the most critical part

of the pandemic. However, a comprehensive analysis of the spatial association between transit

and the diffusion of COVID-19 has not yet been conducted.

In this article, we try to connect these two strands of the literature by investigating whether

places characterised by a greater propensity to use public transport have been more severely

affected by the pandemic.

3. COVID-19 in Italy

Our empirical analysis focuses on Italy, the first Western country to be deeply affected by the

diffusion of COVID-19. Thus, Italy is the ideal scenario for investigating whether transit usage

in a country whose government and citizens were unprepared to face the pandemic contributed

to the initial spread of the disease. In other words, while policymakers and residents of other

European countries were influenced by emerging data and the Italian case, the travel behaviours

of people in Italy were not biased by events elsewhere.

The timeline of the COVID-19 crisis in Italy (summarised in Figure 1) has been as follows:

the first two COVID-19 cases were officially detected on 30 January, after a Chinese couple

travelled from Wuhan to Milan, Verona, Parma, and Florence. The first cases of secondary

transmission were identified near Codogno and Vo’ (two municipalities in Lombardy and Veneto,

respectively) on 21 February. On 23 February, two days later, the Italian government enforced

mobility restrictions into and from these areas (DPCM1, 2020). On 4 March, all schools and

universities were closed (DPCM2, 2020). On 8 March, a lockdown was imposed for the country’s

first relevant “red zone” (DPCM3, 2020): that is, the whole of the Lombardy region and 14

additional provinces within the Emilia-Romagna, Marche, Piedmont, and Veneto regions. A

few days later, on 11 March, this lockdown was extended to the whole nation (DPCM4, 2020).

As a result, many business activities open to the public, such as restaurants and retail stores,
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were forced to close, and people were advised to stay home. Between 22 March and 25 March, the

lockdown was further tightened through a shutting down of all non-essential economic activities

and a prohibition on any movement of people on Italian soil, with few exceptions (e.g., for work

or health; DPCM5, 2020; DPCM6, 2020). This marked the so-called “phase 1” of the epidemic,

which gradually ended between 4 May and 18 May.

Figure 1: Timeline of events, by date

Oubreak
National

Lockdown

Tightened

Lockdown

End of

lockdown

21 February 11 March 25 March 18 May

Notes: The figure shows the timeline of the main events occurring during the first wave of the pandemic in

Italy. Source: Authors’ own elaboration.

4. Data

To investigate the association between public transport usage and the spatial diffusion of

COVID-19 in Italy, we rely on two main data sources: the Italian National Institute of Statistics

(ISTAT) and the Italian Institute for Environmental Protection and Research (ISPRA). We

describe the variables used in the empirical analysis in the following section.

4.1. Measuring the spread of COVID-19 through excess mortality

We measure the spread of the pandemic using excess mortality, rather than the official

number of COVID-19 cases, because excess mortality has some important and desirable features.

First, these data are available at the municipal level, while case data are available only at the

province level. Hence, the data on excess mortality are more granular and, thus, more suitable

for aggregation at the LMM level. LLMs are defined by ISTAT as travel-to-work areas, making

them gravitational areas by nature.

Second, the use of excess mortality partially eliminates the risk of measurement errors and

endogeneity issues related to the identification of COVID-19 patients, such as the spatial het-

erogeneity in screening procedures and testing capacities4.

4Between 25 May and 15 July 2020, the Italian Ministry of Health and ISTAT conducted an epidemiological
investigation to estimate the percentage of the population that probably contracted the infection by sampling
150 000 individuals throughout the entirety of Italy. The results (based on 64 660 serological tests) show that the
number of people who contracted the virus was equal to 2.5% of the population: six times more than the official
COVID-19 cases detected during the pandemic cycle (ISTAT, 2020).
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Third, the use of excess mortality allows for the capture of possible COVID-19-related fatal-

ities even before 21 February, when the first Italian cases were identified5. Similarly, the excess

mortality measure is conceptually superior to the official COVID-19 fatalities because the latter

depend on hospitals’ differing classifications (Buonanno et al., 2020; Galeotti and Surico, 2020)

and are likely to underestimate the true increase in mortality, since a substantial number of

people died without being tested6 (Bartoszek et al., 2020; Ciminelli and Garcia-Mandicó, 2020).

Lastly, excess mortality allows us to consider not only the direct effects of the spread of

the virus, expressed by the loss of lives of individuals who have contracted the infection, but

also its indirect effects, expressed by the loss of lives of individuals untreated due to the lack of

opportunities for hospitalisation caused by hospital congestion.

For all 7 903 Italian municipalities, we obtained data released by ISTAT on 22 October 2020

reporting the daily number of fatalities during the first six months of 2020 and the average

daily fatalities during the same periods for 2015 through 2019 (referred to as the “baseline”

throughout the rest of the article). Then, we aggregated these data at the LLM level and defined

our outcome of interest as the increase in fatalities recorded every day between 1 January and

30 June 2020, compared to the same day in the baseline:

mortality growthit =
fatalities2020it − fatalitiesbaselineit

fatalitiesbaselineit

(1)

where i denotes the LLM and t denotes the day. Figure 2 plots the evolution of excess

mortality during our period of analysis, showing that Italy was most severely hit by the pandemic

during March and April. It also illustrates how the lockdown restrictions were essential in

flattening the curve, reducing mortality growth to nearly the pre-pandemic level by June.

4.2. Measuring pre-existing transit usage and commuting

To measure areas’ different pre-existing levels of public transport usage, we drew on Italy’s

latest official country-wide assessment of mobility, which was conducted during the 2011 national

census. For each Italian municipality, the variable describes the share of the total population

who moved daily by collective means of transport for the purposes of labour or study. Our transit

index (transit) at the LMM level is defined as the average of such shares for all municipalities

in the same LLM, weighted by population. In other words, this index measures the propensity

for public transport usage within each functional region.

However, in the context of a pandemic, whether and how intensively people move might be

more important than the type of transport used. Indeed, a growing number of studies have

5By analysing the first three complete genomes of SARS-CoV-2, Zehender et al. (2020) reported that the
virus was present in Italy weeks before the first reported case.

6As reported by INPS (2020), during the first quarter of 2020, Italy suffered 46 909 more deaths than the
average number of fatalities during the same periods from 2015 to 2019. By comparison, the Department of
Civil Protection declared an official count of 27 938 COVID-19 fatalities. It is plausible that the majority of the
remaining 18 971 fatalities were also caused by the spread of the disease.
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Figure 2: Evolution of mortality growth in Italy, by day

Notes: Since 2020 is a leap year, we excluded February 29 from the dataset to ensure full comparability
between 2020 and the baseline data. Source: Authors’ own elaboration.

shown that human mobility significantly contributed to the initial spread of the disease (Cintia

et al., 2020; Glaeser et al., 2020; Iacus et al., 2020) and that more connected places face more

severe epidemiological risk (Borsati et al., 2020). This is why several national governments

imposed unprecedented lockdown restrictions and social distancing measures to better control

virus transmissions.

We aim to disentangle the possible role of transit from other confounding factors by consider-

ing the structural characteristics of labour markets’ commuting flows. To this end, we aggregate

the latest municipality-to-municipality origin–destination matrix (ODs) - provided by the same

country-wide mobility assessment7 - into LLM-to-LLM ODs, in which each node represents an

Italian local labour market. Then, following the most recent literature, we compute two syn-

thetic indices that describe the network of commuting flows from different perspectives. The

7Gatto et al. (2020) provide evidence that the 2011 commuting flows are still informative of the current ones,
as the spatial patterns of workers and students mobility seem to be remarkably preserved over such a long time
interval.
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first index is defined as the ratio between self-flows, or the total number of people pii moving

between municipalities within the same LLM for reasons of work or study, and the population

of the area:

internal commutingi =
pii

populationi
(2)

Given that, by definition, our territorial units are self-contained labour markets within which

the resident population coincides as closely as possible with the working population (as explained

in Section 1), this index measures the intensity of an LLM’s internal mobility. Accordingly, we

define each LLM’s overall degree of external mobility by computing both its out-flows, or the

total number of people pij moving from their residential LLM i to any other LMM j for the

same reasons of work or study, and its in-flows, or the total number of people pji moving to

LMM i from any other LMM j. Then, our second index is the sum of the previous incoming

and outgoing flows over the population of the area:

external commutingi =

∑n
j=1(pij + pji)

populationi
(3)

In other words, this second index is a proxy of the openness of each LLM, expressed by the

share of the population exposed to the possible import of the virus from elsewhere.

4.3. Control variables

In our econometric analysis, we control for several other variables, in line with the recent

literature explaining the spatial diffusion of the disease (e.g., Bisin and Moro, 2020; Desmet and

Wacziarg, 2020). To this end, we capture relevant geographic and demographic characteristics

potentially correlated with both excess mortality and transit by including the average altitude

of the municipalities in the LLM (altitude), the share of coastal municipalities in the LLM

(coastal), the log of the LLM’s population density (ln density), and a proxy of physical prox-

imity for each territorial unit, defined as the average number of square meters per inhabitant in

occupied dwellings (house m2 pc).

Then, given that the COVID-19 fatality rate is positively correlated with a higher presence

of elderly people (Knittel and Ozaltun, 2020), that nursing homes and hospitals were the first

epicentres of the pandemic (Alacevich et al., 2020; Barnett and Grabowski, 2020), and that

pollution can be an important co-determinant of COVID-19-related fatalities8 (Becchetti et al.,

2020; Coker et al., 2020; Conticini et al., 2020; Wu et al., 2020), we also control for three measures

of vulnerability to the pandemic at the LLM level: the population share older than 759 years

8Several studies in the medical literature show that individuals living in highly polluted areas have a reduced
capacity to react to respiratory diseases and pneumonias (Pope III and Dockery, 2006).

9By controlling for the incidence of elderly people on the total population, we partially control for the share
of inactive population within each LLM.
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old (share over75), the number of hospital beds per 1 000 inhabitants (hospital beds), and the

PM10, defined as the average values of µg/m3 (pm10).

Finally, we account for differences in LLMs’ economic structure by including a dummy vari-

able that takes the value of 1 if an LLM is defined as an industrial district10 (district), and 0

otherwise, since previous studies show that work-related mobility and social interactions within

industrial clusters are very high (Gordon and McCann, 2000; OECD, 2002; Majocchi and Pre-

sutti, 2009).

All data are publicly available11. Table 1 reports standard descriptive statistics and reference

years for the variables used in the empirical analysis.

Table 1: Descriptive statistics

Mean SD Minimum Maximum Observations Year

mortality growth 0.233 1.612 -1.000 34.000 105 948 2020

transit 0.101 0.033 0.030 0.298 110 591 2011

internal commuting 0.360 0.059 0.052 0.556 110591 2011

external commuting 0.167 0.072 0.026 0.824 110591 2011

altitudea 370.557 285.930 1.000 1 518.736 110 591 2011

coastal 0.262 0.375 0.000 1.000 110 591 2011

ln densityb 4.738 1.105 2.186 8.555 110591 2019

house m2 pcc 41.530 4.087 28.989 53.873 110 591 2011

share over75 0.113 0.023 0.056 0.189 110 591 2011

hospital bedsd 1.582 2.370 0.000 21.911 110 591 2017

pm10e 26.690 7.508 14.000 46.000 110 591 2017

district 0.231 0.421 0.000 1.000 110 591 2011

Notes: The number of Italian municipalities decreased from 8 092 in 2011 to 7 903 in 2020.

Hence, before aggregating municipality data at the LLM level, we precisely combined data by

considering all of the administrative variations occurring in Italy during these 9 years, such as

the establishment of new municipalities and the suppression of others. We ended up with 611

LLM observed for 181 days.

Unit of measurement : [a] meters, [b] log of population per km2, [c] m2 per inhabitant, [d] per

1 000 inhabitants, [e] µg/m3.

4.4. Descriptive evidence

We now briefly describe the spatial patterns of our main variables of interest. Figure 3a

plots the spatial evolution of the average mortality growth in March 2020, when Italy was

10Industrial districts are LLM mainly composed by small- and medium-sized enterprises specializing in the
same economic activity.

11mortality growth data are retrieved from https://www.istat.it/it/archivio/240401. transit,
house m2 pc, and share over75 data are retrieved from http://ottomilacensus.istat.it/.
internal commuting and external commuting data are retrieved from https://www.istat.it/it/

archivio/157423. altitude, coastal, and ln density data are retrieved from https://www.istat.

it/it/archivio/156224. hospital beds data are retrieved from http://dati.istat.it/. pm10
data are retrieved from https://www.isprambiente.gov.it/it/pubblicazioni/stato-dellambiente/

xiv-rapporto-qualita-dell2019ambiente-urbano-edizione-2018. district data are retrieved from
https://www.istat.it/it/archivio/150320.
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most severely hit by the pandemic (see Figure C.1 for the same map for the other included

months). COVID-19-related fatalities appear to be spatially clustered in the northern part of

Italy, particularly in the Lombardy region and across the Po Valley area. However, Figure 3b

shows that many of the LLMs with high levels of public transport usage are also scattered in

the centre and south of Italy. Indeed, except for Milan and its hinterland, the lack of a visual

correlation between mortality growth and transit is striking, suggesting that places where

workers and students are more prone to commute by collective means of transport have not

experienced systematically more severe effect of the pandemic.

Figure 3: Descriptive evidence, by LLM

(a) Average mortality growth in March (b) transit

Source: Authors’ own elaboration.

5. Empirical analysis

5.1. Econometric model

To identify whether transit played a significant role in the initial spread of COVID-19 during

the first wave of the pandemic, we estimate the following equation:

mortality growthit = β0 + βmtransiti × δm + γminternal commutingi × δm

+ ηmexternal commutingi × δm + ωmZi × δm + αi + δt + εit
(4)

where mortality growthit measures the increase in fatalities in LLM i on day t, compared

to the same period during the baseline. On the right-hand side, transiti, internal commutingi,
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and external commutingi are mobility indices capturing the LMM’s pre-existing public trans-

port usage and commuting flow characteristics. Given that such indices are time-invariant, they

are interacted with a vector of time dummies (δm) representing the first six months of 2020.

Excluding January as the pre-outbreak period, the vectors of coefficients βm, γm, and ηm cap-

ture the impacts of our main explanatory variables on excess mortality over the various phases

of the pandemic, expressed by the different months. This model is in line with those proposed

by other recent studies, such as Durante et al. (2020) and Borsati et al. (2020).

Then, Zi×δm are the set of previously described geographic, demographic, vulnerability and

economic controls, also interacted with month dummies. In addition, αi and δt are full sets of

LMM and day fixed effects, respectively, where the LMM dummies absorb all the time-invariant

differences among the territorial units, such as the provision of public transport services and the

quality of the related infrastructural network, and the daily dummies account for the nation-

wide common evolution of excess mortality induced by seasonal trends or government policies,

such as mobility restrictions and economic lockdowns. Finally, εit are heteroskedasticity- and

autocorrelation-consistent standard errors (Andrews, 1991) clustered at the LLM level.

In the following, we present results of estimations of the previous equation both as classical

least squares with fixed effects and by using quantile regressions that allow for considerable

heterogeneity in the magnitude of parameters.

5.2. Estimation results

In this section, we report regression results for Equation 4 from different perspectives. The

empirical analysis proceeds as follows: First, we examine the correlation between the average

mortality growth during the first six months of 2020 and our time-invariant explanatory vari-

ables using simple cross-sectional regressions (Table 2). Second, we exploit the longitudinal

dimension of our excess mortality data by adding the daily time component and interacting all

the explanatory variables with month dummies (Table 3). In so doing, we capture relevant unob-

served heterogeneity through fixed effects regressions and analyse the association between excess

mortality and the predictors over the various phases of the pandemic cycle. Third, we perform

panel data quantile regressions to investigate any variation in the coefficients of our explanatory

variables over the conditional quantiles of the mortality growth distribution12 (Figures 4–6 and

Table 4).

In Table 2, column 1 includes only our main explanatory variable of interest (i.e., public

transport usage), while column 2 adds both the internal and external commuting indices. Then,

columns 3 and 4 progressively include all previously described sets of control variables. Although

we should not interpret the estimates deriving from such simple cross-sectional specifications in

depth, it is immediately clear that none of the coefficients associated with transit are statis-

tically significant, while those associated with internal commuting and external commuting

12In statistics, a quantile defines a particular part of a dataset by determining the number of values in a
distribution above or below a certain limit.

11



are positively and strongly correlated with excess mortality. Moreover, the latter preserve their

sign and significance throughout the columns, exhibiting lower magnitudes as the specifications

become less parsimonious. At first glance, these findings suggest that the contribution of public

transport usage to the spread of COVID-19 during the first wave of the pandemic is far from

obvious, while the movement of people, expressed by the network of commuting flows, seems to

be a determining factor.

Table 2: Transit usage and mortality growth (cross-sectional analysis)

mortality growth (half-yearly)

(1) (2) (3) (4)

transit -0.043 -0.155 -0.178 -0.008
(0.223) (0.191) (0.217) (0.226)

internal commuting 1.223*** 0.947*** 0.616***
(0.142) (0.142) (0.137)

external commuting 1.070*** 0.972*** 0.553***
(0.158) (0.167) (0.129)

altitude 0.000** 0.000***
(0.000) (0.000)

coastal -0.048** 0.012
(0.025) (0.024)

ln density 0.031** -0.004
(0.013) (0.013)

house m2 pc 0.004* 0.002
(0.002) (0.002)

share over75 -1.130***
(0.425)

hospital beds 0.004
(0.003)

pm10 0.012***
(0.002)

district 0.067**
(0.028)

constant 0.078*** -0.530*** -0.757*** -0.555***
(0.026) (0.055) (0.121) (0.122)

Observations 611 611 611 611
R2 0.00 0.16 0.18 0.29

Notes: All specifications present OLS estimates. The dependent variable
is the average mortality growth occurred during the first six months of
2020 (i.e., the whole period of analysis). Significance values: ***p<0.01,
**p<0.05, *p<0.10.

In Table 3, we corroborate our preliminary findings by analysing the explanatory variables

around monthly time-breaks. More precisely, we augment all the previous specifications with the

set of interactions between covariates and month dummies13. Accordingly, all columns include

the full sets of LMM and day fixed effects to better control for time-invariant characteristics

potentially correlated with both excess mortality and the predictors. Since no large-scale mo-

bility restrictions were enforced until 8 March, and since the incubation plus confirmation time

13Since our explanatory variables are time-invariant, their main effects are omitted from all specifications due
to collinearity with LMM fixed effects.
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of COVID-19 is approximately 12 to 15 days (Bartscher et al., 2020; Lauer et al., 2020), we

should expect transit usage to increase COVID-19-related fatalities (through an acceleration of

on-board infections) between March and April. However, the coefficients associated with transit

are no statistically significant for all months and specifications.

Thus, we find no evidence that LLMs in which commuters are more likely to use public

transport experienced greater excess mortality during the most critical part of the pandemic

Table 3: Transit usage and mortality growth (panel data analysis – part 1)

mortality growth

(1) (2) (3) (4)

transit× February 0.077 0.076 0.206 0.207
(0.381) (0.386) (0.400) (0.428)

transit×March -0.945 -1.070 -1.273 -0.976
(0.907) (0.830) (0.970) (0.930)

transit×April -0.336 -0.537 -0.158 -0.079
(0.699) (0.637) (0.663) (0.681)

transit×May 0.576 0.489 0.116 0.036
(0.445) (0.448) (0.502) (0.530)

transit× June -0.181 -0.199 -0.425 -0.507
(0.458) (0.461) (0.505) (0.527)

internal commuting × February 0.188 0.229 0.134
(0.230) (0.272) (0.273)

internal commuting ×March 3.600*** 2.183*** 1.126*
(0.662) (0.618) (0.611)

internal commuting ×April 2.871*** 2.236*** 1.815***
(0.433) (0.527) (0.496)

internal commuting ×May 0.657** 0.304 0.246
(0.286) (0.356) (0.350)

internal commuting × June 0.287 0.059 0.058
(0.269) (0.342) (0.342)

external commuting × February 0.251 0.282 0.287
(0.190) (0.210) (0.218)

external commuting ×March 4.468*** 3.821*** 2.261***
(0.824) (0.845) (0.607)

external commuting ×April 2.652*** 2.280*** 1.627***
(0.433) (0.481) (0.443)

external commuting ×May 0.263 0.213 0.159
(0.220) (0.267) (0.278)

external commuting × June 0.287 0.156 0.205
(0.201) (0.222) (0.230)

constant 0.247*** -0.432*** -0.970*** -0.789***
(0.035) (0.096) (0.210) (0.208)

LLM FE X X X X
Day FE X X X X
Geographic controls × δm 5 5 X X
Demographic controls × δm 5 5 X X
Vulnerability controls × δm 5 5 5 X
Economic controls × δm 5 5 5 X

Observations 105 948 105 948 105 948 105 948
R2 0.06 0.07 0.07 0.08

Notes: All specifications present OLS estimates and include LLM and day fixed effects.
Standard errors clustered at the LLM level are in parentheses. Significance values:
***p<0.01, **p<0.05, *p<0.10.
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cycle. Conversely, the coefficients associated with the two commuting indices in those months

remain consistent in both sign and significance, even when plugging in controls. Notably, moving

from the most parsimonious specification in column 2 to the most extended in column 4 decreases

their magnitude without substantially increasing the standard error. This pattern suggests

that the additional covariates are powerful predictors of variations in mortality growth as they

capture important components of variability (see Table B.1 for regression results for all control

variables).

We further explore the results obtained thus far by estimating panel data quantile regressions

for the specification in column 2 of Table 3 (Graham et al., 2015). By leaving aside the control

variables, we aim to examine a relationship that is as “clean” as possible between excess mortality

and our mobility indices at different points of the conditional distribution of mortality growth.

In other words, we test whether public transport might be a determining factor for at least

certain low, medium or high levels of our outcome of interest. Indeed, one of the desirable

features of a quantile regression is that it is less sensitive to outliers and skewness than the

standard OLS method.

To this end, Figures 4–6 plot the estimated coefficients associated with all the interactions

among transit, internal commuting, and external commuting and the month dummies over

quantiles. In more detail, the green lines plot these coefficients with 95% confidence intervals

from the 0.05th quantile (representing the lowest levels of excess mortality) to the 0.95th quantile

(representing the highest levels of excess mortality), while horizontal lines plot OLS estimates

with 95% confidence intervals. Interestingly, the magnitudes of the coefficients at various quan-

tiles related to transit (Figure 4) do not differ considerably from the OLS coefficients in any

month included in our period of analysis. On the other hand, during the period when Italy was

most severely hit by the pandemic, Figures 5b–5c and Figures 6b–6c show how the magnitudes

of the coefficients related to internal and external commuting vary over quantiles, especially

in March, when both trends approximate an exponential growth towards the right tail of the

mortality growth distribution.

To shed light on the statistical significance of some of these coefficients, Table 4 reports

the point estimates for the 0.10th, 0.30th, 0.50th, 0.70th, and 0.90th quantiles of the distribu-

tion. Once again, the coefficients associated with transit are no significant for all months and

quantiles, while those associated with internal commuting and external commuting remain

positively and strongly correlated with excess mortality. By focusing solely on March and April

and moving from the lowest to the highest quantile, we can see how the magnitudes of these

latter coefficients exhibit an increasing trend that is particularly pronounced for the very high

levels of excess mortality. In line with the findings of studies conducted elsewhere, such empirical

evidence confirms that the structure of the network of commuting flows plays an important role

in increasing the epidemiological risks for more connected places. For the sake of completeness,

Figures A.1–A.3 and Table A.1 report the same set of coefficients related to panel data quan-

tile regressions for the specification in column 4 of Table 3, which is the most complete one in

relation to our data.
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Figure 4: Plots of quantile regression coefficients related to transit, by month

(a) February (b) March

(c) April (d) May

(e) June

Notes: Panel data quantile regressions for the specification in column 2 of Table 3.
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Figure 5: Plots of quantile regression coefficients related to internal commuting, by month

(a) February (b) March

(c) April (d) May

(e) June

Notes: Panel data quantile regressions for the specification in column 2 of Table 3.
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Figure 6: Plots of quantile regression coefficients related to external commuting, by month

(a) February (b) March

(c) April (d) May

(e) June

Notes: Panel data quantile regressions for the specification in column 2 of Table 3.
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Table 4: Transit usage and mortality growth (quantile regressions analysis – part 1)

mortality growth

(1) (2) (3) (4) (5)

Quantiles: 0.10 0.30 0.50 0.70 0.90

transit× February -0.160 0.039 0.013 0.010 0.385
(0.180) (0.444) (0.253) (0.379) (1.098)

transit×March -0.381 0.259 -0.664 -0.289 -2.313
(0.400) (0.643) (0.511) (0.751) (2.202)

transit×April -0.518 -0.041 -0.675 0.252 -1.050
(0.339) (0.692) (0.545) (0.727) (1.857)

transit×May -0.172 -0.243 0.297 0.027 0.717
(0.178) (0.558) (0.288) (0.365) (1.150)

transit× June -0.052 -0.900 -0.379 -0.335 -0.336
(0.196) (0.589) (0.290) (0.424) (1.253)

internal commuting × February 0.193* 0.390* 0.178 0.103 0.819
(0.114) (0.199) (0.186) (0.234) (0.595)

internal commuting ×March 1.504*** 2.068*** 1.694*** 2.639*** 9.116***
(0.285) (0.371) (0.413) (0.579) (1.545)

internal commuting ×April 1.425*** 2.257*** 2.265*** 2.782*** 4.936***
(0.246) (0.364) (0.347) (0.430) (1.181)

internal commuting ×May 0.263** 0.916*** 0.519** 0.592** 1.561**
(0.129) (0.276) (0.221) (0.260) (0.665)

internal commuting × June -0.013 1.002*** 0.859*** 0.663** 0.815
(0.134) (0.260) (0.206) (0.280) (0.632)

external commuting × February 0.097 0.283** 0.386** 0.438** 0.037
(0.106) (0.132) (0.162) (0.205) (0.540)

external commuting ×March 1.518*** 1.999*** 2.352*** 3.421*** 6.716***
(0.254) (0.300) (0.495) (0.578) (1.222)

external commuting ×April 1.403*** 1.891*** 2.079*** 2.618*** 3.401***
(0.222) (0.296) (0.386) (0.440) (0.912)

external commuting ×May 0.137 0.490*** 0.389** 0.447** 0.278
(0.122) (0.181) (0.175) (0.200) (0.532)

external commuting × June 0.097 0.511*** 0.349** 0.429* 0.346
(0.133) (0.162) (0.164) (0.222) (0.404)

constant -1.251*** -0.787*** -0.282*** 0.216*** 1.451***
(0.015) (0.024) (0.012) (0.005) (0.032)

LLM FE X X X X X
Day FE X X X X X
Geographic controls × δm 5 5 5 5 5
Demographic controls × δm 5 5 5 5 5
Vulnerability controls × δm 5 5 5 5 5
Economic controls × δm 5 5 5 5 5

Observations 105 948 105 948 105 948 105 948 105 948
Pseudo R2 0.03 0.03 0.03 0.04 0.04

Notes: Panel data quantile regressions for the specification in column 2 of Table 3. Standard errors
clustered at the LLM level following the Parente and Silva (2016) procedure are in parentheses.
Significance values: ***p<0.01, **p<0.05, *p<0.10.

Overall, though we cannot rule out the possibility of virus transmission on public trans-

port, the statistically weak association between COVID-19-related fatalities and transit usage

provided here shows that places in which commuters are more prone to use public transport

were not affected by higher excess mortality during the studied period. At the same time, our

findings suggest that what matters most is whether people move, not how they move.
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5.3. Robustness checks

In the following section, we briefly describe robustness checks designed to corroborate our

empirical findings. First, though the full set of LMM fixed effects absorbs all the time-invariant

differences between the territorial units, we are aware that our transit index may not be able to

fully capture some qualitative characteristics of public transport services that could be relevant

in the context of a pandemic, such as passenger density (Haywood et al., 2017). Indeed, in

addition to utilisation rate, the crowding in public transport could also be a determining factor

for virus transmissions. To test whether the aforementioned dynamic played a role in the initial

spread of COVID-19, we define a proxy of transit density by calculating, within each LLM, the

total number of people commuting by collective means of transport per square kilometre:

transit densityi =
transiti × pii
surfacei

(5)

where transiti is our previous index of interest measuring the propensity to use public trans-

port, pii indicates the total number of workers and students moving between municipalities of

the same LLM (expressed by Equation 2), while surfacei measures the area of each territo-

rial unit (in square kilometres). Then, we estimate Equation 4 by replacing transit with the

log14 of this new explanatory variable. As shown by Table 5, the coefficients associated with

transit density are positively correlated with excess mortality in the most parsimonious specifi-

cation (i.e., column 1), but their significance disappears as soon as control variables are included.

Consistently with the main estimates provided by Table 3, such statistically weak association

lend our empirical findings additional reliability.

Second, so far, we have analysed the relationship between our explanatory variables and the

diffusion of COVID-19 by interacting all the covariates with a vector of time dummies (δm)

representing the first six months of 2020. However, a reasonable concern is whether the analysis

around monthly time-breaks might be the most appropriate for investigating the role of transit

usage over the pandemic cycle. Therefore, we estimate an alternative specification to Equation 4

by interacting all the predictors with a new vector of time dummies (δp) defined by the timeline

of the COVID-19 crisis and the related government policy responses. More precisely, and in

accordance with the main events summarised in Figure 1, we analyse the explanatory variables

around five periods: i) pre-outbreak (until 20 February), which is the excluded period; ii) post-

outbreak and pre-lockdown (21 February to 10 March), iii) lockdown (11 March to 24 March);

iv) tighter lockdown (25 March to 17 May); and v) post-lockdown (18 May onwards). Regression

results provided in Table 6 show that the coefficients associated with transit are, once again, no

statistically significant throughout all periods and specifications, while the coefficients associated

with internal commuting and external commuting are very consistent with those provided in

Table 3, meaning that the choice of time intervals is not driving our estimates.

14Given the skewness of transit density, we log transform the variable to obtain more symmetrically dis-
tributed residuals.
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Table 5: Transit usage and mortality growth (transit density)

mortality growth

(1) (2) (3) (4)

log(transit density) × February -0.000 -0.009 0.016 0.018
(0.013) (0.014) (0.029) (0.032)

log(transit density) × March 0.125*** 0.006 0.090 0.027
(0.039) (0.037) (0.085) (0.073)

log(transit density) × April 0.058*** -0.035 0.012 -0.016
(0.021) (0.024) (0.053) (0.049)

log(transit density) × May 0.041*** 0.031* 0.025 0.019
(0.015) (0.016) (0.034) (0.036)

log(transit density) × June 0.032** 0.029* 0.023 0.022
(0.014) (0.016) (0.032) (0.034)

internal commuting × February 0.257 0.183 0.089
(0.252) (0.289) (0.291)

internal commuting ×March 3.494*** 1.921*** 1.021
(0.595) (0.619) (0.646)

internal commuting ×April 3.106*** 2.204*** 1.858***
(0.477) (0.539) (0.513)

internal commuting ×May 0.448 0.231 0.191
(0.318) (0.362) (0.359)

internal commuting × June 0.053 -0.008 -0.021
(0.300) (0.354) (0.357)

external commuting × February 0.280 0.260 0.271
(0.189) (0.206) (0.215)

external commuting ×March 4.463*** 3.718*** 2.212***
(0.836) (0.837) (0.606)

external commuting ×April 2.787*** 2.268*** 1.645***
(0.466) (0.490) (0.452)

external commuting ×May 0.143 0.180 0.138
(0.219) (0.261) (0.275)

external commuting × June 0.185 0.132 0.170
(0.196) (0.214) (0.225)

constant 0.206*** -0.439*** -0.888*** -0.760***
(0.008) (0.094) (0.234) (0.223)

LLM FE X X X X
Day FE X X X X
Geographic controls × δm 5 5 X X
Demographic controls × δm 5 5 X X
Vulnerability controls × δm 5 5 5 X
Economic controls × δm 5 5 5 X

Observations 105 948 105 948 105 948 105 948
R2 0.06 0.07 0.07 0.08

Notes: All specifications present OLS estimates and include LLM and day fixed effects.
Standard errors clustered at the LLM level are in parentheses. Significance values:
***p<0.01, **p<0.05, *p<0.10.

6. Conclusions

The COVID-19 pandemic is causing serious challenges and dramatic changes that may per-

manently affect our lives in contemporary societies. Social distancing, mobility restrictions and

mask usage are all common features of everyday life at the time of this writing. Within this

critical framework, transport services have been subjected to several restrictions and policy

discussions seeking to reduce the speed of contagion spread while maintaining a vital level of
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Table 6: Transit usage and mortality growth (δp)

mortality growth

(1) (2) (3) (4)

transit × 21 Feb–10 Mar 0.314 0.303 0.324 0.342
(0.476) (0.478) (0.533) (0.531)

transit × 11 Mar–24 Mar -1.321 -1.463 -1.489 -1.219
(1.085) (1.020) (1.218) (1.177)

transit × 25 Mar–17 May -0.248 -0.444 -0.383 -0.250
(0.606) (0.555) (0.590) (0.596)

transit × 18 May–onwards -0.088 -0.109 -0.463 -0.508
(0.352) (0.359) (0.390) (0.404)

internal commuting × 21 Feb–10 Mar 0.528* 0.313 0.164
(0.297) (0.361) (0.362)

internal commuting × 11 Mar–24 Mar 4.416*** 2.680*** 1.288*
(0.834) (0.765) (0.778)

internal commuting × 25 Mar–17 May 2.619*** 1.983*** 1.575***
(0.376) (0.433) (0.403)

internal commuting × 18 May–onwards 0.176 -0.096 -0.091
(0.211) (0.256) (0.260)

external commuting × 21 Feb–10 Mar 0.716*** 0.588** 0.324
(0.268) (0.292) (0.264)

external commuting × 11 Mar–24 Mar 5.458*** 4.514*** 2.450***
(1.021) (1.007) (0.697)

external commuting × 25 Mar–17 May 2.345*** 2.096*** 1.411***
(0.406) (0.455) (0.398)

external commuting × 18 May–onwards 0.109 0.015 0.016
(0.151) (0.169) (0.174)

constant 0.250*** -0.386*** -0.761*** -0.578***
(0.030) (0.080) (0.173) (0.170)

LLM FE X X X X
Day FE X X X X
Geographic controls × δp 5 5 X X
Demographic controls × δp 5 5 X X
Vulnerability controls × δp 5 5 5 X
Economic controls × δp 5 5 5 X

Observations 105 948 105 948 105 948 105 948
R2 0.06 0.07 0.07 0.08

Notes: All specifications present OLS estimates and include LLM and day fixed effects. Stan-
dard errors clustered at the LLM level are in parentheses. Significance values: ***p<0.01,
**p<0.05, *p<0.10.

connectivity within and among territories.

This paper has focused on the centre of these debates: transit services. In particular, we

considered an Italian dataset relating excess mortality in all local labour markets with propensity

to use public transport and found no significant statistical correlation. In other words, we showed

that the locations where transit was most used were not disproportionally affected by the virus.

In contrast, we detected a statistically significant association between the spread of COVID-19

and mobility, measured by commuting flows.

Our findings suggest that it is the undertaking of a journey, not the transit mode used, that

is a significant vehicle for virus diffusion. This conclusion could have consequences for current

transport policy. Social distancing rules have already had repercussions for the overall capacity
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of the different transport systems, and further adaptations are expected in terms of, among

others, demand reduction and supply profitability. These will, in turn, affect users’ transit

behaviours and choice of transit mode, within wider and more unpredictable temporal horizons.

Public transport, which is one of the pillars of sustainable transport, is also the form of

transport most endangered by this new pandemic paradigm. The principles of effectiveness,

which were central even before the emergency, now face new and more binding constraints that

threaten their economic sustainability. This could even lead to the empty core problem (Button,

2005), a phenomenon well-known to air transport companies that could be extended, mutatis

mutandis, to all transport modes within a partially privatised market. Steps typical of this pro-

cess include the need to increase transport capacity, an increase in costs, service unsustainability,

bankruptcies and, ultimately, a reduction in competitiveness of the whole system. It is impor-

tant to guarantee support for the surviving transport companies during this transition phase to

ensure both the plurality of supply and the retention of acceptable levels of competition.
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Appendices

Appendix A Quantile regressions

Figure A.1: Plots of quantile regression coefficients related to transit, by month

(a) February (b) March

(c) April (d) May

(e) June

Notes: Panel data quantile regressions for the specification in column 4 of Table 3.
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Figure A.2: Plots of quantile regression coefficients related to internal commuting, by month

(a) February (b) March

(c) April (d) May

(e) June

Notes: Panel data quantile regressions for the specification in column 4 of Table 3.
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Figure A.3: Plots of quantile regression coefficients related to external commuting, by month

(a) February (b) March

(c) April (d) May

(e) June

Notes: Panel data quantile regressions for the specification in column 4 of Table 3.
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Table A.1: Transit usage and mortality growth (quantile regressions analysis – part 2)

mortality growth

(1) (2) (3) (4) (5)

Quantiles: 0.10 0.30 0.50 0.70 0.90

transit× February 0.140 -0.060 0.107 0.236 -0.196
(0.277) (0.457) (0.339) (0.422) (1.183)

transit×March -0.096 0.241 -1.022* -0.731 -1.506
(0.507) (0.674) (0.602) (0.753) (2.146)

transit×April -0.184 0.136 -0.680 -0.134 -0.870
(0.407) (0.612) (0.515) (0.721) (1.662)

transit×May -0.011 -0.053 -0.204 -0.285 0.016
(0.279) (0.504) (0.343) (0.451) (1.337)

transit× June 0.095 -1.142* -0.549 -0.637 -0.851
(0.305) (0.616) (0.367) (0.464) (1.465)

internal commuting × February 0.137 0.544* 0.188 0.096 1.047
(0.167) (0.293) (0.249) (0.293) (0.934)

internal commuting ×March 0.647* 0.685 0.899** 1.300** 3.355**
(0.342) (0.419) (0.402) (0.520) (1.465)

internal commuting ×April 0.960*** 1.134*** 1.468*** 1.647*** 3.409***
(0.306) (0.386) (0.338) (0.475) (1.240)

internal commuting ×May -0.036 0.636* 0.019 0.168 0.462
(0.200) (0.348) (0.255) (0.301) (0.859)

internal commuting × June -0.063 0.828** 0.555** 0.118 0.409
(0.191) (0.378) (0.239) (0.304) (0.977)

external commuting × February -0.096 0.435** 0.355* 0.499** 0.539
(0.168) (0.209) (0.199) (0.211) (0.524)

external commuting ×March 0.388* 1.217*** 1.586*** 2.079*** 1.844*
(0.229) (0.342) (0.398) (0.533) (1.067)

external commuting ×April 0.530** 1.027*** 1.199*** 1.727*** 2.169***
(0.237) (0.327) (0.270) (0.338) (0.742)

external commuting ×May -0.350 0.333 0.117 0.222 -0.131
(0.230) (0.295) (0.199) (0.203) (0.673)

external commuting × June -0.387** 0.407 0.164 0.219 0.021
(0.193) (0.322) (0.176) (0.202) (0.580)

constant -1.249*** -0.787*** -0.280*** 0.218*** 1.445***
(0.015) (0.025) (0.012) (0.005) (0.033)

LLM FE X X X X X
Day FE X X X X X
Geographic controls × δm X X X X X
Demographic controls × δm X X X X X
Vulnerability controls × δm X X X X X
Economic controls × δm X X X X X

Observations 105 948 105 948 105 948 105 948 105 948
Pseudo R2 0.04 0.04 0.04 0.04 0.04

Notes: Panel data quantile regressions for the specification in column 4 of Table 3. Standard errors
clustered at the LLM level following the Parente and Silva (2016) procedure are in parentheses.
Significance values: ***p<0.01, **p<0.05, *p<0.10.
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Appendix B Additional Tables

Table B.1: Transit usage and mortality growth (panel data analysis – part 2)

mortality growth

(1) (2) (3) (4)

transit× February 0.077 0.076 0.206 0.207
(0.381) (0.386) (0.400) (0.428)

transit×March -0.945 -1.070 -1.273 -0.976
(0.907) (0.830) (0.970) (0.930)

transit×April -0.336 -0.537 -0.158 -0.079
(0.699) (0.637) (0.663) (0.681)

transit×May 0.576 0.489 0.116 0.036
(0.445) (0.448) (0.502) (0.530)

transit× June -0.181 -0.199 -0.425 -0.507
(0.458) (0.461) (0.505) (0.527)

internal commuting × February 0.188 0.229 0.134
(0.230) (0.272) (0.273)

internal commuting ×March 3.600*** 2.183*** 1.126*
(0.662) (0.618) (0.611)

internal commuting ×April 2.871*** 2.236*** 1.815***
(0.433) (0.527) (0.496)

internal commuting ×May 0.657** 0.304 0.246
(0.286) (0.356) (0.350)

internal commuting × June 0.287 0.059 0.058
(0.269) (0.342) (0.342)

external commuting × February 0.251 0.282 0.287
(0.190) (0.210) (0.218)

external commuting ×March 4.468*** 3.821*** 2.261***
(0.824) (0.845) (0.607)

external commuting ×April 2.652*** 2.280*** 1.627***
(0.433) (0.481) (0.443)

external commuting ×May 0.263 0.213 0.159
(0.220) (0.267) (0.278)

external commuting × June 0.287 0.156 0.205
(0.201) (0.222) (0.230)

altitude× February 0.000 0.000
(0.000) (0.000)

altitude×March 0.001* 0.001**
(0.000) (0.000)

altitude×April 0.000** 0.000**
(0.000) (0.000)

altitude×May 0.000** 0.000**
(0.000) (0.000)

altitude× June 0.000 -0.000
(0.000) (0.000)

coastal × February 0.047 0.032
(0.051) (0.053)

coastal ×March -0.265** 0.009
(0.116) (0.113)

coastal ×April -0.098 0.017
(0.078) (0.080)

coastal ×May 0.080 0.087
(0.058) (0.060)

coastal × June -0.014 -0.024
(0.062) (0.067)

ln density × February 0.001 -0.002
(0.020) (0.021)

ln density ×March 0.155** 0.012

Continued on next page
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Table B.1 – continued from previous page

mortality growth

(1) (2) (3) (4)

(0.061) (0.058)
ln density ×April 0.062* -0.002

(0.035) (0.037)
ln density ×May 0.078*** 0.066**

(0.026) (0.026)
ln density × June 0.037 0.037

(0.024) (0.025)
house m2 pc× February 0.007 0.011*

(0.004) (0.006)
house m2 pc×March 0.018* -0.004

(0.010) (0.011)
house m2 pc×April 0.023*** 0.013*

(0.007) (0.008)
house m2 pc×May 0.010* 0.008

(0.005) (0.006)
house m2 pc× June 0.000 0.001

(0.004) (0.006)
share over75 × February -1.013

(0.994)
share over75 ×March -1.427

(1.940)
share over75 ×April -0.603

(1.386)
share over75 ×May -0.058

(1.137)
share over75 × June 0.088

(1.036)
hospital beds× February 0.011

(0.008)
hospital beds×March 0.019

(0.012)
hospital beds×April 0.006

(0.009)
hospital beds×May 0.007

(0.006)
hospital beds× June 0.007

(0.007)
pm10 × February -0.000

(0.002)
pm10 ×March 0.053***

(0.008)
pm10 ×April 0.025***

(0.004)
pm10 ×May 0.005*

(0.003)
pm10 × June 0.000

(0.003)
district× February -0.044

(0.032)
district×March 0.224

(0.136)
district×April 0.060

(0.067)
district×May -0.040

(0.041)
district× June -0.039

Continued on next page
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Table B.1 – continued from previous page

mortality growth

(1) (2) (3) (4)

(0.037)
constant 0.247*** -0.432*** -0.970*** -0.789***

(0.035) (0.096) (0.210) (0.208)

LLM FE X X X X
Day FE X X X X

Observations 105 948 105 948 105 948 105 948
R2 0.06 0.07 0.07 0.08

Notes: All specifications present OLS estimates and include LLM and day fixed effects.
Standard errors clustered at the LLM level are in parentheses. Significance values:
***p<0.01, **p<0.05, *p<0.10.
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Appendix C Additional Figures

Figure C.1: mortality growth, by monthly averages and LLM

(a) January (b) February

(c) March (d) April

(e) May (f) June

Source: Authors’ own elaboration.
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