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Abstract 

The economic effects of global warming have gained considerable attention in recent 

economic literature. However, the interaction between desertification and agricultural 

productivity has not received substantial consideration. In this paper, we explore the 

relationship between soil aridification (a process that considers both precipitation and 

potential evapotranspiration of the soil) and agricultural productivity. Our most 

conservative estimates show that the process of aridification, having occurred from 1995 

to 2005, was associated with a decline in agricultural output of between 0.4 and 1.1 tons 

per hectare of cultivated cropland in Africa and of between 0.1 and 0.5 tons per hectare 

of cultivated cropland in Asia.  
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1. Introduction 

Climate change is one of the most severe threats currently faced by humankind. 

Consequently, the economic effects of global warming in different areas of the world 

have been a central question in the recent economic literature. In this framework, there is 

an extensive number of studies dealing with the economic and social impacts of reduced 

rainfalls and higher temperatures, from both the macroeconomic and microeconomic 

perspectives (Dell et al., 2008, 2012; Burke et al., 2015; Zhang et al., 2017).  

However, the variation in the intensity of precipitation and temperature rise are only two 

facets of a more complex process of profound changes occurring in the environment in 

which humans live. In this paper, we consider a phenomenon that the economic literature 

has almost wholly neglected: desertification, defined as the combined effect of 

precipitation with soil transpiration (United Nations Convention to Combat 

Desertification, 2020).   

We assess the impact of desertification on agricultural productivity for four different 

crops between 1995 and 2005 by assembling a novel dataset covering the globe with 

5,636 grids. The empirical estimates show that the aridification process in that period 

contributed to a decline in agricultural output of between 0.4 and 1.1 tons per hectare of 

cultivated cropland in Africa and between 0.1 and 0.5 tons per hectare of cultivated 

cropland in Asia. 

The empirical evidence presented in this paper helps in several ways. First, it helps to 

collect, comprehend and present the available evidence on the interplay between climate 

warming and land productivity more meaningfully and methodically.  Second, it helps 

identify the gaps in evidence and thus point to necessary future research. Third, by 

considering the Aridity Index rather than the standard climate variables used in the 

environmental economics literature, it promotes the discussion of policies needed to 

alleviate the impacts of climate change on land productivity.  

The rest of the paper is organized as follows: Section 2 presents the data used to estimate 

the relationship between aridification and agricultural productivity. We first describe the 

time-series data used to measure agricultural productivity, defined as the total agricultural 

production of a specific crop expressed in tons over the number of hectares devoted to it. 

We then describe the grid-level time series climate variables used to construct the Aridity 
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Index (Middleton and Thomas, 1997), i.e., average annual precipitation levels and 

potential evapotranspiration (PET). Section 3 presents the empirical framework that can 

estimate the relationship between climate warming and agricultural productivity. Section 

4 reviews the evidence regarding aridification's effects on land productivity. Finally, 

Section 5 concludes. 

 

2. Data 

Agricultural Productivity Data 

Our main dataset comprises climate-related variables and certain variables related to 

agricultural productivity, covering the globe. 

We use Ramankutty et al. (2002) to construct our subnational crop yields1 for maize, rice, 

wheat, and soybean from approximately 5,636 grids across 51 countries. The group of 51 

countries accounted for approximately 79% of maize, 80% of rice, 70% of wheat, and 

97% of soybean harvested worldwide in the period 2004-2008. More important, those 51 

countries, in global terms over the same years, accounted for approximately 91% of 

maize, 83% of rice, 78% of wheat, and 99% of soybean production. The resulting land-

use datasets depict five-year averages for 1995, 2000, and 2005 for the area (harvested) 

and yield of wheat, maize, rice, and soybeans. 

  

 

Climate Data and the Aridity Index 

The aridity index (AI) is constructed using both precipitation and potential 

evapotranspiration (PET) data. For this construction, we refer to the definition provided 

by Middleton and Thomas (1997). Annual AI for grid cell "i" at year "t" is defined as the 

ratio between average precipitation and PET of year "t" in cell "i", and is therefore 

expressed in millimeters of water effectively available on the ground, as follows: 

𝐴𝐼𝑖,𝑡 =
𝑃𝑖,𝑡

𝑃𝐸𝑇𝑖,𝑡
 

Tables 1 and 2 report respectively, summary statistics for weather variables and 

agricultural productivity. Precipitation, potential evapotranspiration, and temperature 

data are provided by the gridded Climatic Research Unit (CRU) Time-series (TS) version 

 
1 The yield is the ratio of production and harvested area 
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4.00. The data are provided on high-resolution (0.5 degrees × 0.5 degrees) grids. 

Precipitation and PET are expressed in millimeters (mm./month), while the surface 

temperature is expressed in C°. A total of 16,908 observations were collected for the years 

1995, 2000, and 2005. 

Figure 1 shows the spatial variation in soil aridity during the period 1995-2005 and figures 

2 to 4 show the global variation in crop yields during the same period. Taken together, 

these figures show clear evidence that the African continent is the most affected by 

aridification and suffered the most in terms of agricultural output loss. 

 

3. Empirical Framework 

To show the effect of desertification on agricultural productivity, we have estimated a set 

of baseline regressions in the form of: 

 

𝑦𝑖𝑡 = 𝛼 + 𝛽1𝐴𝐼̅̅
𝑖̅𝑡 + 𝛽2𝐴𝐼̅̅

𝑖̅𝑡
2 + 𝛽3𝑃̅𝑖𝑡 + 𝛽4𝑃𝐸𝑇̅̅ ̅̅ ̅̅

𝑖𝑡 + 𝛽5𝑇̅𝑖𝑡 + 𝜎𝑡 +  𝜌𝑖  + 𝜀𝑖𝑡 

 

We denote with yit the natural logarithm of crop yield of grid i in year t. 𝐴𝐼̅̅
𝑖̅𝑡 indicates the 

average aridity index in grid i in the two years previous to that reported (i.e., t-2 and t-1). 

𝑃̅𝑖𝑡 indicates the annual average amount of precipitation of grid i in years t-2 and t-1, 

while the variable 𝑃𝐸𝑇̅̅ ̅̅ ̅̅
𝑖𝑡 reveals the average potential evapotranspiration of grid i in years 

t-2 and t-1. In addition, we also control for average mean surface temperature 𝑇̅𝑖𝑡 of grid 

i in year t. Finally, the model considers year-fixed effects, denoted with σt, and grid-fixed 

effects, denoted with 𝜌𝑖. We estimate equation (2) via a panel-fixed effects estimator.   

How we construct our desertification variable, namely by focusing on actual water 

availability of soil rather than on precipitation levels and temperature only, allows us to 

isolate effects specific to agricultural yields. As for other potential channels like the intra-

country price of principal crops or a country's or region's suitability for crop cultivation, 

our benchmark specification includes the interaction of country and year dummies, which 

capture aggregate country-specific shocks.  
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4. Results 

First, we show both linear and quadratic relationships between standard climate variables, 

such as precipitation and temperature, and the output of four major crops for which time 

series of actual yields at the sub-regional level is available. These results are shown in 

Table 3.  

After showing the linear and non-linear relationships between precipitation and 

temperature and agricultural output, we then include PET and consider the effects on crop 

yield of variations in the Aridity Index. Table 4 contains our main results on the grid-

level relationship between annual variations in the Aridity Index and crop production. 

Results in Table 3 show a positive relationship between precipitation and GDP. This is in 

line with previous economic literature (Dell et al., 2012, 2014; Burke et al., 2015). 

 

However, Table 4 shows a stronger relationship between soil aridity and GDP per capita. 

This suggests that precipitation alone does not explain as much as GDP variability as the 

Aridity Index.  In particular, columns (1-4) of Table 4 show that a decrease of one unit in 

the Aridity Index is associated with a reduction of 1.75 ton/ha in maize yield;  0.05 ton/ha 

of soybean yield; 0.6 ton/ha of rice yield, and 0.19 ton/ha of wheat yield.  

We further restrict the sample of interest to African and Asian countries and for two 

reasons: first, African and Asian economies rely greatly upon their agricultural sector. 

Therefore we expect the impact of aridification to be more significant there than in the 

more advanced economies. Second, the local people may lack the finances and know-

how needed to adapt to soil aridification. Estimates of the relationship between 

agricultural productivity and soil aridification on the African and Asian continents are 

stated in Tables 5 and 6, respectively. Columns (1-4) of Tables 5 and 6 show the linear 

and non-linear relationship between the Aridity Index and crop yields for Africa and Asia, 

respectively. These results reinforce our expectations that the impact of soil aridification 

on crop yield is more pronounced in economies predominantly relying on agriculture than 

in advanced economies. 
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5. Conclusion 

Climate warming affects the social and economic growth of our societies in a multitude 

of dimensions. Whereas the relationship between temperature and per capita GDP has 

been extensively demonstrated, less is known about the channels through which climate 

affects the economy. This study empirically investigates the link between two often 

overlooked variables in recent economic literature: aridification of the soil and 

agricultural productivity. We assemble the most comprehensive panel dataset of climate 

and agricultural variables at a very disaggregated spatial level, covering the globe 

between 1995 and 2005. Our results show that first, there has been an increase of 3.9% 

in soil aridification during this period. Second, this implied a global loss of about 1.7 

million tons of maize, 81,000 tons of rice, 786,000 tons of soybeans, and 430,000 tons of 

wheat, with Africa and Asia the world's most affected areas. 
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Figures and Tables 

Figure 1: Change in Aridity Index from 1995 to 2005 

 

 
 

Figure 2: Percentage change in maize production per hectare from 1995 to 2005 
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Figure 3: Percentage change in rice production per hectare from 1995 to 2005 

 
 

 

Figure 4: Percentage change in soybean production per hectare from 1995 to 2005 
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Figure 5: Percentage change in wheat production per hectare from 1995 to 2005 
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        Table 1: Summary Statistics, Panel Data Sample 

 

Variable Unit Obs. Mean Std. Dev. Min Max 

Precipitation mm./month 1,601,730 5.209725 5.675847 0 90.96001 

PET mm./month 1,601,730 8.300419 5.05923 0 24.5 

Aridity Index mm./month 1,601,730 .9595675 .942291 0 18.76085 

Temperature C° 1,601,730 13.81946 12.35726 -20.1 37.7 

      Note: Each observation is a cell. 

 

 

 

 

Table 2: Summary Statistics, Panel Data Sample, Crop Yields 
 

Variable Unit Obs. Mean Std. Dev. Min Max 

Maize ha./tons 8,541 1.05004 2.217958 0 37 

Rice ha./tons 12,798 1.041983 1.937873 0 58 

Soybeans ha./tons 10,800 .3715471 .7404208 0 8 

Wheat ha./tons 16,347 .7417051 1.380763 0 10 

Note: Each observation is a cell. Gridded crop yields for maize, rice, soybean and wheat 

are available for the years 1995, 2000 and 2005. 
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Table 3: Effects of Precipitation and Temperature on Total Yield of four major crops. 

Year, Grid-Fixed Effects and Country Trends 

 

 (1) (2) (3) (4) 

VARIABLES Maize Yield Soybean Yield Rice Yield Wheat Yield 

     

Precipitation 0.0825 0.0557** 0.213*** 0.0116** 

 (0.0609) (0.0220) (0.0322) (0.00558) 

𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛2  -0.0403*** -0.0116*** -0.0438*** -0.0475* 

 (0.00908) (0.00410) (0.00594) (0.0265) 

Temperature 0.0669*** 0.00613 0.0188*** 0.00529 

 (0.0160) (0.00406) (0.00643) (0.00371) 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒2 -0.00282*** 0.000715*** 0.00267*** -0.000350* 

 (0.000513) (0.000135) (0.000387) (0.000200) 

Constant 1.363*** 0.139 -0.824** 0.942*** 

 (0.366) (0.0919) (0.328) (0.103) 

     

Observations 9,090 11,259 13,367 16,903 

R-squared 0.037 0.018 0.048 0.007 

Number of id 3,031 3,754 4,456 5,636 

Grid FE YES YES YES YES 

Year FE YES YES YES YES 

World YES YES YES YES 

Note: This table presents the linear and non-linear effects of precipitation and temperature on the 

total yield of four major crops in tons/ha.   

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 4: Effects of Aridity Index on Total Yield of four major crops. Year, Grid-Fixed 

Effects and Country Trends 

 (1) (2) (3) (4) 

VARIABLES Maize Yield Soybean Yield Rice Yield Wheat Yield 

     

AI 1.753*** 0.0514 0.603*** 0.194** 

 (0.247) (0.0662) (0.164) (0.0795) 

𝐴𝐼2 -0.123** 0.0343 -0.276*** -0.000255 

 (0.0614) (0.0328) (0.0474) (0.0327) 

PET 0.133 0.128*** 0.342*** -0.139*** 

 (0.125) (0.0404) (0.0722) (0.0391) 

Temperature -0.0126 0.000135 0.0392*** 0.00141 

 (0.0242) (0.00384) (0.0111) (0.00430) 

Constant 1.222*** 0.178* -0.979*** 1.278*** 

 (0.386) (0.105) (0.289) (0.134) 

     

Observations 9,090 11,259 13,367 16,903 

R-squared 0.040 0.021 0.073 0.018 

Number of id 3,031 3,754 4,456 5,636 

Grid FE YES YES YES YES 

Year FE YES YES YES YES 

World YES YES YES YES 

Note: This table presents the effects of desertification on the total yield of four major crops in 

tons/ha.   

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: Effects of Aridity Index on Total Yield of four major crops. African Continent. 

Year, Grid-Fixed Effects and Country Trends 
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 (1) (2) (3) (4) 

VARIABLES Maize Yield Soybean Yield Rice Yield Wheat Yield 

     

AI 4.290*** 1.517*** 0.452 -1.067* 

 (0.730) (0.525) (0.413) (0.642) 

𝐴𝐼2 -0.435*** -0.236*** -0.216*** 0.158* 

 (0.0940) (0.0911) (0.0566) (0.0895) 

Precipitation -1.225*** -0.339** -0.0170 0.187 

 (0.211) (0.135) (0.102) (0.162) 

PET 0.656*** 0.468*** 0.218** -0.379*** 

 (0.158) (0.0663) (0.0928) (0.0720) 

Temperature 0.121* 0.0450** 0.268*** 0.0668** 

 (0.0720) (0.0188) (0.0357) (0.0262) 

Constant -3.985*** -2.193*** -6.559*** 1.197** 

 (1.473) (0.443) (0.884) (0.515) 

     

Observations 3,821 4,518 7,842 7,082 

R-squared 0.078 0.132 0.130 0.026 

Number of id 1,274 1,506 2,614 2,361 

Grid FE YES YES YES YES 

Year FE YES YES YES YES 

World YES YES YES YES 

Note: This table presents the effects of desertification on the total yield of four major crops in 

tons/ha.   

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6: Effects of Aridity Index on Total Yield of four major crops. Asian Continent. 

Year, Grid-Fixed Effects and Country Trends 
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 (1) (2) (3) (4) 

VARIABLES Maize Yield Soybean Yield Rice Yield Wheat Yield 

     

AI 0.875* 0.0832 1.458*** 0.578*** 

 (0.508) (0.0544) (0.216) (0.107) 

𝐴𝐼2 -0.153 -0.0504 -0.429*** 0.0175 

 (0.105) (0.0400) (0.0955) (0.0731) 

Precipitation -0.355** 0.0340 -0.163*** -0.195*** 

 (0.179) (0.0370) (0.0630) (0.0504) 

PET -0.600** 0.173*** 0.755*** 0.0698 

 (0.293) (0.0483) (0.181) (0.0795) 

Temperature 0.0314 0.0159*** -0.0204* 0.0463*** 

 (0.0415) (0.00385) (0.0112) (0.00816) 

Constant 3.068*** -0.0207 -0.872* 0.179 

 (0.670) (0.0960) (0.497) (0.194) 

     

Observations 2,144 4,113 3,248 5,139 

R-squared 0.077 0.032 0.136 0.078 

Number of id 715 1,371 1,083 1,713 

Grid FE YES YES YES YES 

Year FE YES YES YES YES 

World YES YES YES YES 

Note: This table presents the effects of desertification on the total yield of four major crops in 

tons/ha.   

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Additional Literature  

Here, we have provided evidence on a global scale of the impact of soil aridification on 

agricultural productivity. 

To the best of our knowledge, the effect of soil aridification on different economies due 

to human-induced climate change on a global scale is a novel question for economists 

and social scientists.2  However, Maccini and Yang (2009) studied the long-term effects 

of variations in rainfalls in Indonesia and found a positive impact of precipitation on the 

health and economic wellbeing of individuals who had grown up during years 

characterized by higher levels of precipitation. Furthermore, a more recent study by Peri 

and Sasahara (2019) has found that rising temperatures reduce rural-urban migration in 

poor countries, while the opposite effect is shown for middle-income countries.  

Although early papers such as those of Boellstorff and Benito (2005), Atis (2006), and  

Hein (2007) were the first to focus on an estimation of the relationship between 

agricultural productivity and land degradation, all did so at the farm level. Salvati (2010) 

is the first author to have attempted to estimate this novel relationship on a regional scale, 

considering the example of Italy. He uses the total agricultural value, expressed in euros 

per hectare, of utilized agricultural area in order to approximate total agricultural 

productivity. He finds mixed results for various regions of the country depending on 

economic development status. Increasing land degradation was associated with declining 

agricultural productivity. However, using the total agricultural value per hectare of 

cultivated area will incorporate confounding factors linked to the value of the land. 

Indeed, the value of land may depend not only on climatic conditions. Instead, variation 

in value may result from variations in regional agricultural policies or in national and 

international demand for a specific crop. Thus, for a better assessment of the relationship 

between climate and land productivity, we should first consider another measure of 

agricultural productivity, one which does not consider the actual value of land but uses 

the total output per different crop. In the second instance, the use of data available at a 

very disaggregated spatial level helps alleviate concerns of omitted variables – other than 

climatic variations – affecting agricultural productivity.    

 

 
2 One of the first papers is that of Harari and La Ferrara (2018), in which the authors assess the relationship 
between the potential evapotranspiration (or SPEI, which stands for Spatial Potential Evapotranspiration 
Index) and the onset of conflicts in Africa. However, no studies have made use of findings regarding the 
impact of aridification on development, or on crop production. 
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Data description 

Our dataset consists of high-frequency, geo-referenced data from various sources, 

constituting a base covering the globe between 1990 and 2015. We construct a dataset of 

weather and agricultural variables with a raster grid structure: the observation units are 

subnational "cells" of 0.5 degree of latitude by 0.5 degree of longitude (approximately 56 

km at the equator) for three time periods between 1995 and 2005 (i.e., the years 1995, 

2000 and 2005). 

Climate variables are retrieved from the CRU TS4.04 dataset, which provides monthly 

data on cloud cover, diurnal temperature range, frost day frequency, wet day frequency, 

potential Evapotranspiration (PET), precipitation, daily mean temperature, monthly 

average daily maximum and minimum temperatures, and vapor pressure for the period 

January 1901 to December 2019. Total precipitation amounts range from a minimum of 

zero to a maximum of 91 millimeters per month. Potential evapotranspiration ranges from 

a minimum of zero to a maximum of 24.5 millimeters per month.3 Finally, the annual 

mean surface temperature ranges from a minimum of -20 C° to a maximum of 37.7 C°. 

The CRU TS4.04 data were produced using angular-distance weighting (ADW) 

interpolation. The CRU TS4.04 data are monthly gridded fields based on monthly 

observational data calculated from daily or sub-daily data by national meteorological 

services and other external agents. Both the ASCII and NetCDF data files contain 

monthly mean values for the various parameters. The NetCDF versions include an 

additional integer variable, "stn", which provides, for each datum in the primary variable, 

a count (between 0 and 8) of the number of stations used in such interpolation. The 

missing value code for "stn" is -999. All CRU TS output files are actual values and do 

not consider anomalies.  

As for precipitation, potential evapotranspiration data are retrieved from the gridded 

Climatic Research Unit (CRU) Time-series (TS) version 4.00. Data are month-by-month 

variations in climate variables over the period 1901-2015. The data are provided on high-

resolution (0.5 degree × 0.5 degree) grids, produced by CRU at the University of East 

Anglia and funded by the UK National Centre for Atmospheric Science (NCAS), a NERC 

 
3 As for annual averages: precipitations range between zero and 1,092 millimiters, and PET ranges 
between zero and 294 millimeters.  
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collaborative center. Precipitation data are available for each month from 1901 to 2015 

and are expressed as average monthly rainfalls in millimeters (mm./month). We compute 

the average monthly precipitation (mm./month) for each year. Unlike precipitation data, 

potential evapotranspiration is available daily from the same period range and is 

expressed in mm./day. To assess the empirical evaluation of precipitation and PET's 

effects, we compute the average monthly PET (mm./month) for each year. We also use 

average annual temperature as a climate grid-specific control variable. Gridded data on 

temperature are retrieved from CRU Time-Series Dataset. 

 

Crop Yields Data 

Most global land cover datasets obtained from satellite photography group croplands into 

just a few categories, thereby excluding information that is critical for answering key 

questions ranging from biodiversity conservation to food security to biogeochemical 

cycling. Information about agricultural land use practices like crop selection, yield and 

fertilizer use is even more limited.  

Ramankutty et al. (2002) present land use datasets created by combining national, state, 

and county-level census statistics with a global dataset of croplands on a 5-arc minute by 

5-arc minute scale (which corresponds to a grid of approximately 10 km by 10 km 

latitude/longitude). Approximately 600,000 census statistics per crop have been used to 

construct the crop yield data. Out of the 226 political units (nations) for which the Food 

and Agriculture Organization (FAO) provides national-level data, we collected data at the 

next administration level for 51 countries and at the third administration level for 17 

countries. 

We use Ramankutty et al. (2002) to retrieve data on crop yields.  Data on crop yields are 

available for the years 1995, 2000, and 2005. However, for some regions, these data refer 

to the year previous to that reported. For example, crop yield for 2005 refers to data 

observed in the year 2004. For this reason, when evaluating the impact of precipitation 

on crop yields, we use the average precipitation levels of the two years previous to that 

reported.   

The sample of data on crop production over hectares of crop cultivated is limited, 

compared with climate variables, both in spatial and temporal terms. We consider crop 

yields for maize, rice, soybean, and wheat available for 1995, 2000, and 2005. 
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Specifically, for maize cultivation, we have a total of 8,541 observations ranging from a 

minimum of zero to a maximum of 37 tons per hectare of land. For rice, we have 12,798 

observations ranging from a minimum of zero to a maximum of 58 tons per hectare. For 

soybean, we have 10,800 observations ranging from a minimum of zero to a maximum 

of 8 tons per hectare. Finally, for wheat, we have 16,347 observations ranging from a 

minimum of zero to a maximum of 10 tons per hectare. 

 

In this database, where sub-national data are available, the frequency of reporting varies 

among countries. Our most significant gap in subnational information concerns the 

former Soviet Republics.  

Not all crops need the same amount of water. Schuyt and Brander (2004) sought to 

determine the exact water usage for major crops. Their study identified a range of well-

known agricultural products commonly defined as the "thirstiest" water users. Overall, 

four of these commodities stand out as the "thirstiest", i.e., the most significant total water 

users in the river basins concerned, namely: rice, sugar, cotton, and soybeans, with 

vegetables being crucial locally in many cases. Rice is the thirstiest crop, using about 70 

million m3 of water annually, with cotton, soybeans, and sugar using about 50 million m3 

each. For example, it takes from 3,000 to 5,000 liters of water to produce 1 kilogram of 

rice; on the other hand, 2,000 liters of water are needed to produce 1 kg of soybeans, 

while only 500 liters of water are needed to produce 1 kg of potatoes. Furthermore, the 

study estimates that 50 million m3 of water are also needed annually to grow wheat since 

more hectares of wheat are grown than all of the other three crops put together. 

 

Finally, some numbers: maize, rice, soybean, and wheat are produced globally on 100 

million hectares4 (on 162 million hectares5, 131 million hectares6, and 215 million 

hectares7 , respectively).  

 

 
4 Source: Global Demand and production of Maize. The CGIAR Research Program on Maize. 
https://maize.org/projects-cimmyt-and-iita-2/ 
5 Source: World rice acreage 2010-2019 (Shahbandeh, 2021). 
https://www.statista.com/statistics/271969/world-rice-acreage-since-2008/ 
6 Voora et al. (2020) 
7 Source: Global Demand and production of Wheat. The CGIAR Research Program on Wheat. 
https://wheat.org/wheat-in-the-world/ 

https://maize.org/projects-cimmyt-and-iita-2/
https://www.statista.com/statistics/271969/world-rice-acreage-since-2008/
https://wheat.org/wheat-in-the-world/
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Relationships between AI and Crop Yields 

Column (1) of Tables 5 and 6 shows that a decrease of one unit in the Aridity Index is 

associated with a reduction in maize yield of 4.3 tons/ha. and 0.9 ton/ha., respectively, 

for African and Asian countries. Column (2) of Tables 5 and 6 shows that a decrease of 

one unit in the Aridity Index is associated with a reduction in rice yield of 1.5 ton/ha. for 

African countries. At the same time, no effect on Asian countries is noted. Column (3) of 

Tables 5 and 6 shows that a decrease of one unit in the Aridity Index is associated with a 

reduction in soybean yield of 1.5 tons per hectare cultivated for Asian countries, while no 

effect is noted for Africa. Finally, column (4) of Tables 5 and 6 shows that a decrease of 

one unit in the Aridity Index is associated with a reduction in wheat yield of 0.6 ton/ha. 

for Asian countries. At the same time, no substantial effect on African wheat production 

is noted. 
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