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1. Introduction

Power generation is the largest industry sector covered by the European Union CO2

emissions trading scheme (EU ETS)1 . Therefore, on the one hand, the performance of

the ETS largely depends on its e¢ cacy in inducing power industry to signi�cantly reduce

CO2 emissions. On the other hand, the ETS might have a sensible impact on power prices

and, consequently, on social welfare.

This study focuses on this latter issue, attempting to understand how a CO2 price could

impact on power pricing when electricity markets are imperfectly competitive2 . Studies

aimed at exploring this issue do exist but they provide a very controversial framework.

On the theoretical side, Sijm et al. (2005) and Wals and Rijkers (2003) �nd that

the electricity price in a competitive scenario increases more than under market power,

on both percentage and absolute basis3 . They attribute this result to the assumption

of linear demand function they adopt. Surprisingly, however, Lise (2005) achieves the

opposite result (electricity price increases more under market power) even though the

author use the same model. Reinaud (2003), relying on price competition, and Newbery

(2005), by assuming constant price elasticity, states that electricity prices are likely to

increase more under market power.
1The EU ETS started in 2005. In the period 2005-2007, each European country allocates allowances

to eligible �rms. At least 95% of the total amount of allowances are allocated free of charge and �rms can

use or trade them. At the end of each calendar year each eligible �rm must deliver a number of allowances

corresponding to his total emissions in that year. At the beginning of 2008 a new ETS starts and the old

allowances become worthless.
2Many authors deal with the link between market structure and environmental issues. For a survey,

see also Requate (2005).
3The aurhors use a game theoretical simulation model based on the theory of Cournot competition and

Conjecture Supply Funcions, the COMPETES model. For details on this model, see Day et al. (2002),

Hobbs and Rijkers (2004a; 2004b).
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On the empirical side, there are not speci�c studies aimed at measuring the impact

of market power. Most analyses try to check whether CO2 costs are fully passed through

into electricity prices or not and generically attribute the "deviation" from this "rule" to

various factors among which the exercise of market power in the output markets.

In this paper, we speci�cally attempt to assess the impact of market power by us-

ing a simple theoretical model and subsequently checking its robustness by means of an

empirical analysis.

Concerning the theoretical issues, we have to be aware that results signi�cantly de-

pends on the choice of the competition model4 .

In the present work we will follow the suggestion of authors who argue in favour of

adopting the "auction" approach (von der Fehr and Harbord, 1993, 1998). In fact, several

electricity spot markets have characteristics which make standard models not well-suited

to their analysis. In particular in these markets pricing mechanism is a uniform, �rst price

auction.

In addition, to simulate market power in electricity markets we use a dominant �rm

facing a competitive fringe model rather than the usual dupolistic-oligopolistic frame-

work. This choice is due to several reasons, either methodological or practical. On the

methodological side, the attraction of this characterization is that it avoids the implau-

sible extreme of perfect competition and pure monopoly, at the same time escaping the

di¢ culties of characterizing an oligopolistic equilibrium5 . On the practical side, it is well

suited to simulate the structural features of the Italian market which is the empirical case

analysed in this paper6 .

4 In particular, price elasticity choice is very important in simulating the impact of the ETS and can

undermine the e¤ectiveness of a model. For example, the existence of Nash equilibria within the Cournot

model requires substantial negative price elasticity. This is the case, for example, of the COMPETES

model cited above. Whereas completely inelastic demand seems to be more appropriate for the power

industry, at least in the short-run. Moreover, Bolle (1992) proves that in this latter case no equilibrium

exists in the supply-function model.
5 In particular, this model allows us to overcome the problem of possible inexistent equilibria in pure

strategy. In their article on spot market competition in the UK electricity industry, using a typical

duopolistic framework, von der Fehr and Harbord (1993) demonstrate that under variable-demands period

(i.e. when the range of possible demands exceeds the capacity of the largest generator) there does not

exist an equilibruim in pure strategy. Instead, there exist a unique mixed-strategy Nash equilibrium.
6 Indeed, the dominant �rm-competitive fringe model is useful to represent the reality of several power

markets. We especially refer to those markets emerging from restructuring processes where the incumbent
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The article proceeds as follows. Section 2 focuses on the theoretical analysis. Firstly

we will carry out a model which will be used in order to derive the price equilibria and

the marginal pass-through rates. We will discuss various possible scenarios depending on

the following factors: (1) the leader�s share of the total capacity in the market (degree

of market concentration); (2) the plant mix operated by either the dominant �rm or the

competitive fringe; (3) the allowance price (lower or higher than the so-called "switching

price"); (4) the available capacity in the market (whether there is excess capacity or not).

Section 3 sets out the empirical analysis. The Italian power market, an emblematic case

of imperfect competition, will be analysed in order to check the robustness of the model

predictions. Finally, section 4 summarizes the main results of the article.

2. Theoretical analysis

2.1. The model: basic assumptions. This subsection describes the structure of the

model detailing the main assumptions on the regulation of the electricity and emissions

allowance markets.

Concerning power demand, consistently with most contributions on this topic, we

assume power demand is inelastic7 , predictable with certainty and given by a typical load

duration curve D = K(H), where H = K�1(K) is the number of hours (the reference

time unit adopted here) in the reference time period (e.g. the year) that demand is equal

to or higher than K (K(H) � K), where 0 � H � HL. KL = K(HL) is the base-load

demand (the minimum level) and KH = K(0) is the peak-load demand (the maximum

level).

With regard to power supply, we model technologies by means of two distinctive ele-

ments: variable costs (essentially, fuel costs) and CO2 emission rates (emissions per unit

of electricity generated).

is obliged to sell a portion of his capacity to di¤erent �rms and new independent producers meet the rise

in power demand over time. This is the case of Italy where Enel was obliged to sell 15,000 MW to

three di¤erent buyers and now holds around 50% of the total power capacity installed in Italy (including

imported power). The wholesale spot market started in 2004 and during the �rst year the power �rms

other than Enel behave as a competitive fringe. In fact, their bid prices were very close to marginal cost

(or, in some circumstances, nil).
7The majority of consumers purchase electricity under regulated tari¤s which are independent of the

prices negotiated in the wholesale market, at least in the short run. This can justi�es the assumption of

price-inelastic demand. See Wolak and Patrick (1997).
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In particular, CO2 emission rate is e � 0 and variable cost of production is v � 0 for

production levels less than capacity, while production above capacity is impossible (i.e.

in�nitely costly).

Since we simulate a uniform, �rst price auction, it su¢ ces focusing on technologies

which have a positive probability of becoming the marginal operating unit. This allows

us to neglect, without loss of generality, those technologies suited to meet the base-load

demand (i.e. nuclear and large hydropower plants, renewable technologies, cogeneration

plants and so on) or which are inelastically supplied.

Given these premises, we restrict the analysis to two groups of plants, a and b, and

assume that each group includes a very large number n of homogeneous generating units8

such that

Kj =
P

i=1;2::n k
i
j = nkj , j = a; b and v

i
j = vj ; e

i
j = ej ;8i; j

where vij = vj > 0 and k
i
j = kj > 0 are the variable cost and the capacity of the i-th

unit belonging to the group j, respectively. Thus Ka and Kb are the installed capacity of

groups a and b, respectively.

Furthermore, we assume va < vb and Ka+Kb = KH , i.e. the units of kind a and b are

su¢ cient to meet the peak demand, and consider two scenarios: Scenario 1 in which there

is trade-o¤ between variable costs and emission rates (hereafter "trade-o¤ in the plant

mix"), i.e. the technology with lower variable cost is the worse polluter (va < vb and

ea > eb, a typical relevant example is given by coal plants (a) versus CCGT -combined

cycle gas turbine- technologies (b)); Scenario 2 in which there is not such a trade-o¤, i.e.

the technology with lower variable cost is also the cleaner technology (va < vb but ea < eb,

a typical relevant example is given by CCGT plants (a) versus steam cycle plants (b)).

These two scenarios are well suited to represent the Italian market which is the context

used for the empirical analysis.

Emission abatement is supposed to be impossible or, equivalently, abatement cost

in�nitely costly. This hypothesis is consistent with the time horizon of the analysis (short

term analysis of the ETS impact).

Concerning the wholesale market, we assume a typical day ahead market. Before

the actual opening of the market (e.g. the day ahead) the generators simultaneously

8Assuming that each group includes the same number n of units implies that kj depends on Kj : This

is an arbitrary assumption which does not undermine, however, the signi�cance of the analysis.
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submit bid prices for each of their units on hourly basis. We neglect the existence of

technical constraints such as start-up costs. The auctioneer (generally the so-called market

operator) collects and ranks the bids by applying the merit order rule. The bids are

ordered by increasing bid prices and form the basis upon which a market supply curve is

carried out.

If called upon to supply, generators are paid according to the market-clearing spot

price (the system marginal price, equal to the highest bid price accepted). All players

are assumed to be risk neutral and to act in order to maximize their expected payo¤

(pro�t). Production costs, emission rates as well as plants�installed capacity are common

knowledge.

Given the regulatory framework described above, it is straightforward that price equi-

libria will depend on the power demand level. Since this latter continuously varies over

time, an useful way of representing the price schedule is carrying out the so-called price

duration curve p(H) where H is the number of hours in the year that the power price is

equal to or higher than p.

With regard to the allowance market, we suppose this market is very large (consistently

with the extent of the European ETS) and that �rms are price takers. Therefore, the

allowance price, ptp, is given exogenously. Carbon emissions allowances are allocated free

of charge and on the basis of the amounts emitted in a base period, generally a year in the

past (typical grandfathering) or the present year or on the basis of the expected emissions

in the future9 .

Finally, we assume that �rm�s o¤er prices are constrained to be below some threshold

level, bp; which can be interpreted in several ways.
It may be a (regulated) maximum price, p, as o¢ cially introduced by the regulator or

we can suppose that it is not introduced o¢ cially but simply perceived by the generators,

i.e. �rms believe that the regulator will introduce price regulation if the price rises above

the threshold. This latter interpretation is well-suited to the topic analysed here. In fact,

�rms might decide to bring bid prices down not only to avoid regulation in the wholesale

electricity market but also to avoid a change in the allowance allocation method, e.g.

from freely allocation to auctioning10 . For these reasons we think that it is acceptable

9For a comparative analysis of the di¤erent allocation methods, see Harrison and Radov (2002) and

Burtraw et al. (2001).
10For instance, in Germany, where there is a controversial debate on this topic, Eon, one of the leading
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assuming the price cap is insensitive to the CO2 price.

Alternatively, we can suppose that there is so much generation that price never is

above the marginal cost of a peaker. In order to simulate this situation, we introduce

a third technology, c, such that vc > max [va; vb] and whose capacity is great enough,

Kc = Kc; that the dominant �rm does not try to let it all run and drive the price up to

the price cap. Instead, Kc = 0; is useful to simulate the situation in which there is not

excess capacity in the market and prices can reach the price cap, p. Finally, we assume

that ea > ec > eb in the Scenario 1 and ec > eb > ea in the Scenario 2. These choices are

crucial for our analysis but not arbitrary. Technoogy c, in fact, can be interpreted as a

typical peaking technology (in the Italian market, old oil-�red plants or gas turbine plants)

whose electrical e¢ ciency is generally much lower than that of the CCGT. Furthermore,

this technology is generally more polluting than CCGT (or gas-�red steam cycle plants)

but cleaner than coal plants.

In brief, we will consider two scenarios (Scenario 1 and Scenario 2, with and without

"trade-o¤ in the plant mix", respectively) and, for each of them, two cases of available

capacity in the market, excess capacity (Kc = Kc) and scarcity of generation capacity

(Kc = 0):

2.2. Price duration curves. In order to derive price equilibria in the form of price

duration curves, we have to start from how the ETS impacts on marginal production

costs. Given that an emission allowance represents an opportunity cost, the marginal

cost of production is expected to include the full carbon opportunity cost, regardless of

whether allowances are allocated free of charge or not. Formally,

MCij = v
i
j + p

tpeij (1)

where MCij is the marginal cost of the i-th unit belonging to the group j of plants and

ptpeij is the corresponding carbon opportunity cost.

Given equation (1) and for the purpose of this analysis, the generating units belonging

to the group j of plants are the most (least) e¢ cient units if their marginal cost (including

the carbon opportunity cost) is lower (higher) than that of the units belonging to the other

group i.

power �rms, argues that "there is no scope to remove windfall pro�ts from the EU-ETS, only redistribute

them, so e¤orts should be focused on bringing the electricity price down".
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Furthermore, looking at the Scenario 1 ("trade-o¤ in the plant mix"), there exists an

allowance price, the "switching price" ptp� = (vb � va) (ea � eb) ; such that the marginal

cost of the plants of the group a, MCa; is equal to that of the plants of the group b, MCb:

Allowance prices are de�ned as low if ptp � ptp� and high if ptp > ptp�:

Finally, the marginal carbon opportunity cost is the price of the CO2 emissions al-

lowance multiplied by the emission rate of the marginal production unit.

Given these de�nitions, the change (due to the ETS) in marginal production cost of

the marginal unit is given by

�MC =

8><>:
MC � vb 8K 2 ]KH ;K]

MC � va 8K 2 ]K;KL]

where

MC = max fMCa = va + ptpea;MCb = vb + ptpebg

MC = min fMCa = va + ptpea;MCb = vb + ptpebg

and K =

8>>>>>>>><>>>>>>>>:

8>>><>>>:
Ka if ptp � ptp�

Kb if ptp > ptp�
when va < vb and ea > eb

Ka 8ptp when va < vb and ea < eb

Notice that �MC is equal to the impact of the ETS under perfect competition. In

this case, in fact, prices equal the marginal cost of the marginal unit regardless of the

power demand level.

We are now able to simulate the impact of market power on power pricing. For this

purpose, as previously pointed out, we adopt a dominant �rm facing a competitive fringe

model. The general formulation of the model assumes that the dominant �rm owns and

operates z 2 [0; 2n] units of both group a and b while the remaining units are operated by

2n � z �rms behaving as a competitive fringe. Obviously, z = 0 corresponds to the case

of pure competition while z = 2n to that of pure monopoly.

In order to derive the price schedule in the form of a price duration curve, we introduce

the following parameters.

The �rst parameter is � 2 [0; 1] representing the share of the total power capacity

in the market operated by the dominant �rm. Complementary, the competitive fringe
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Figure 1: An example of supply con�guration

operates a share (1� �) of the total power capacity. Thus, � can be interpreted as a

measure of the degree of market concentration.

The other parameters are �d 2 [0; 1] and �f 2 [0; 1] representing the share of power

capacity the strategic operator and the competitive fringe get in most e¢ cient plants,

respectively. By complement, �d = (1� �d) and �f = (1� �f ) are the same in the least

e¢ cient ones.

By facing the competitive fringe, the dominant �rm has two alternative strategies: (1)

bidding the price threshold (bp) so accommodating the maximum production by the fringe

or (2) competing à la Bertrand with the rivals in order to maximize his market share.

Let Kf be the installed capacity in most e¢ cient plants operated by the competitive

fringe. Thus Kf = �f (1� �)KH , and H
f = K�1(Kf ).

Similarly, let K = KH �K
d
be the peak demand minus the dominant �rm�s capacity

in least e¢ cient plants (K
d
). Thus K =

�
1� ��d

�
KH , and H = K�1(K).

Finally, K =
�
�d� + �f (1� �)

�
KH is the total capacity in most e¢ cient plants, al-

ready introduced in the previous section.

It is important to note that � determines not only the degree of market concentration

but also the total share of most e¢ cient plants in the market, K. In particular, increasing

� implies increasing K if �d > �f ; and vice versa if �d < �f .

Figure 1 shows an (generic) example of possible power supply con�guration.

The following Lemma describes the shape of the price duration curve.
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Lemma 1. There exists bK 2
i
K;Kf

i
such that the system marginal prices equal the

price threshold bp when K � bK and the marginal cost of the least e¢ cient plants (MC)

when K < bK . When K < Kf , pure Bertrand equilibria (�rst marginal cost pricing) arise

and prices equals the marginal cost of the most e¢ cient plants (MC), where

bK =

8>>><>>>:
eK ��; �d; �� = ��d�� + (1� �)�KH for bK > K

eeK ��; �f ; �� = (1� �)" (1� �f )
(1� �) + �

f

#
KH for bK � K

and � =

�
MC �MC

�
bp�MC with bp =

8>>><>>>:
p for Kc = 0

MCc for Kc = Kc

Proof. See the Appendix.

Therefore, two possible price duration curves are possible depending on whether the

discontinuity is at eH = K�1( eK) or eeH = K�1(
eeK). The following Proposition identi�es

the critical value of � which discriminates between these two cases.

Proposition 1. Under market power, there exists �(�d; �f ; vj ; ej ; ptp) such that

p =

8>>>>><>>>>>:
bp 8K 2

h
0; bKi

MC 8K 2
i bK;Kf

i
MC 8K 2

i
Kf ;KL

i

where: bp =
8>>><>>>:
p for Kc = 0

MCc for Kc = Kc

; bK =

8<: eK if � < �eeK if � � �
and � =

�f � 1
�f � 1 + �d(� � 1)

Proof. See the Appendix.

By di¤erentiating eK and eeK with respect to �d, �f , we �nd that the degree of market

power (which decreases in bK) is an increasing function of �f , when � > �, and a decreasing
function of �d, when � < � (see the Appendix):

Understanding how market power depends on the allowance price (i.e. how the ETS

impacts on market power) is a little bit more complex. The following corollary describes
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this kind of correlation under low allowance prices11 (the most relevant case for the em-

pirical analysis of this paper).

Corollary 1. Under low allowance prices, the ETS determines an increase in market

power ( bK decreases in ptp) if (e � ea)=(v � va) > (eb � ea)=(vb� va), where: e = ec and

v = vc, under excess capacity; e = 0 and v = p, without excess capacity.

Proof. For the formal proof, see the Appendix. Intuitively, the ETS can increase

market power when the change in the cost structure between the technologies makes

more pro�table bidding the price threshold rather than the marginal cost of the least

e¢ cient plants, i.e. when (e � ea)=(v � va) > (eb � ea)=(vb� va). This condition always

(never) is satis�ed if "trade-o¤ in the plant mix" combines with excess capacity (without

both "trade-o¤ in the plant mix" and excess capacity). Otherwise, it is satis�ed only

under certain values of vj and ej .

2.3. Marginal pass-through rate. Since we intend to consider the overall change

in marginal prices due the ETS, an useful way of proceeding is evaluating the marginal

pass-through rate de�ned as follows.

De�nition 1. The marginal pass-through rate (MPTR) is the change in power prices,

4p; divided by the change in marginal production costs of the marginal unit, �MC; due

to the ETS.

Notice that the MPTR is always equal to 1 under perfect competition. In this case, in

fact, prices equal the marginal cost of the marginal unit regardless of the power demand

level.

Table 1: Parameter expressions before and after the ETS

11When allowance prices are high the framework is even more complex. Since understanding how the

ETS impacts on market power under all conditions is beyond the scope of this paper, we neglect the

formal analysis of what can occur under high allowance prices.
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Before ETS Scenario 1 Scenario 2

ptp = 0 ptp � ptp� ptp > ptp� 8ptp

MCc vc MCc MCc MCc

MC vb MCb MCa MCb

MC va MCa MCb MCa

�d �da �da �db �da

�f �fa �fa �fb �fa

In order to carry out the MPTR curve (i.e. how the MPTR is distributed over time), we

have to depict the price and marginal cost (of the marginal unit) duration curves before

and after the ETS distinguishing between low (0 < ptp � ptp�) and high (ptp > ptp�)

allowance prices (only for the Scenario 1). Table 1 shows the di¤erent expressions of

MCc; MC, MC, �d, �f corresponding to the situations after and before the ETS. We

will use the superscript star (*) in order to address the critical threshold of K, H, and �

when ptp 6= 0 (i.e. the situation after the ETS).

In what follows, we will present some relevant examples of marginal pass-through

rate curves corresponding to di¤erent scenarios in terms of available capacity, market

concentration and plant mix. For the sake of simplicity, we will illustrate only the outcome

under low allowance prices while that under high allowance prices is reported in the

Appendix.

Scenario 1 ("trade-o¤ in the plant mix"): low allowance prices. In this case,bK always decreases in ptp under excess capacity whereas may either decrease or increase

under scarcity of generation capacity (see proof of Corollary 1): We refer to increasing

market power because this is the most likely situation given the plausible plant mix in

the market: coal plants (a), CCGT (b) and oil-�red plants (c): In fact, by using the

emission rates and variable costs of these technologies (tab. 4 in the Appendix), we get

(e� ea)=(v� va) > (eb � ea)=(vb� va); regardless of the available capacity in the market.

Thus, three relevant con�gurations (corresponding to three possible values of market

concentration) have to be analysed (see Lemma 1 and Proposition 1): eK > eK� > K

(� < �� < �); eK > K >
eeK�
(�� < � < �); K >

eeK >
eeK�
(�� < � < �).

Figures 2 and 3 illustrate the MPTR curves obtained by deviding the change in prices
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Figure 2: Marginal pass-through rate (MPTR) curve (Scenario 1): low allowance prices

and without excess capacity (�d = �f )

by the change in marginal production cost of the marginal unit12 . For the sake of simplicity

and without loss of generality, we assume that the dominant �rm and the competitive

fringe operate the same share of most e¢ cient plants (�d = �f ).

Figures clearly show that results largely depends on the power demand level (peak vs.

o¤-peak hours) and the available capacity in the market.

In the peak hours, there would not be any CO2 cost pass-through under scarcity of

generation capacity (provided that � is enough high) whereas, under excess capacity, the

MPTR would be more than 1.

In the o¤-peak hours power prices can include the full marginal carbon cost but even

much less if the share of most polluting plant in the market is enough high13 . This is

more likely to occur under excess capacity than under scarcity of generation capacity.

12Curves are carried out by assuming 20 e/tonCO2, which is consistent with the range of varibility

during 2005 and 2006.
13 In fact, a rise in �f determines decreasing H and Hf while eH and eH� do not vary. At the same time,

to the extent to �d decreases, H moves slowly towards the low-load together with eH and eH�. The range

of hours in which the MPTR is less than 1 will tend therefore to disappear.
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and excess capacity (�d = �f )

Scenario 2 (without "trade-o¤ in the plant mix"): low allowance prices.

In this case, as pointed out before (proof of Corollary 1), under excess capacity bothbK > bK� and bK� > bK are possible whereas under scarcity of generation capacity market

power always decreases in ptp ( bK� > bK); regardless of vj and ej . This time a, b and c
may be CCGT, gas-�red steam cycle plants and oil-�red steam cycle plants, respectively

(plausible plant mix).

By using the emission rates and variable costs of these technologies (table 4 in the

Appendix), we get (e � ea)=(v � va) > (eb � ea)=(vb� va), under excess capacity (i.e.

increasing market power), and (e � ea)=(v � va) < (eb � ea)=(vb� va), without excess

capacity (i.e. decreasing market power).

Therefore, the following con�gurations have to be analysed: eK > eK� > K (� < �� <

�), eK > K >
eeK�
(�� < � < �), K >

eeK >
eeK�
(�� < � < �), under excess capacity;eK� > eK > K (� < � < ��), eK� > K >

eeK (� < � < ��), K >
eeK�

>
eeK (� < �� < �),

under scarcity of generation capacity.

In the peak hours (�gs. 4 and 5), the results are similar to those emerging from the
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Scenario 1 (MPTR more than 1, under excess capacity, and less than 1, under scarcity of

generation capacity).

In the o¤-peak hours, instead, the outcome is substantially di¤erent. This time power

prices fully include the marginal carbon opportunity (and even much more in the mid-

merit hours), regardless of the share of most (least) polluting plants in the market.

3. Empirical analysis

With regard to the impact of the ETS on power prices, the empirical literature provides

a controversial framework. Some authors argue in favour of a full (or almost full) pass-

through14 . Others �nd that the CO2 costs seem to have not (yet) been fully passed into

power prices15 or that there is limited evidence that CO2 is factored in wholesale price16 .

This controversial framework arises even though authors analyse the same set of markets.

Therefore, we are not able to check the robustness of our model on the basis of the

current literature, not only because of the (signi�cant) disparities in (and possible limits

of) the methodologies and the uncertainty and immaturity of the CO2 market but also

because these studies do not focus on the problem of measuring the e¤ect of market power.

Thus, the need of carrying out a speci�c empirical analysis arises.

For this purpose, we examine the Italian context which is a highly concentrated market

where Enel, the dominant �rm (holding around 50% of the total power capacity in the

market) is able to exert a high degree of market power. Furthermore, this context is

interesting for another reason. Because of the features of the electricity transport grid,

14For instance, by analyzing the spark spread (the di¤erence between the power price and the cost

of gas to produce a MWh of electricity) in Germany, the Netherland and United Kingdom, Newbery

(2005), relying on visual interpretation, states that "most if not all of the EUA (EU Emission Allowance)

opportunity cost has been passed through into the wholesale price" and ".... possibly more in the presence

of market power". Sijm et al. (2006) argue in favour of a full pass-through, especially in Germany.

Honkatukia et al. (2006) �nd that "on average, about 75% to 95% of a price change in EU ETS is passed

on to the Finnish NoordPool spot price".
15This is the case, for example, of Sijm et al. (2005) who analyze the German and Dutch markets. The

authors calculate the dark spread (the di¤erence between the power price and the cost of coal to produce

a MWh of electricity) in the peak and o¤-peak hours in the case of Germany and the spark spread in the

case of the Netherland. They �nd that that the pass through rates are higher in Germany (where there is

a large share of coal plants) and lower in the Netherland (where there is a large share of gas-�red plants).
16See Levy (2005). The author bases his analysis on the correlation between wholesale prices, fuel costs

and CO2 prices in the case of France, Germany, Spain and UK.
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the Italian wholesale power market can be split into four sub-markets (North, macro-

South, macro-Sicilia and Sardegna).

Table 2: Structural features of the Italian sub-markets (2005)

North macro-South macro-Sicilia Sardegna

Peak demand (MW) 28,800 18,000 3800 1900

Available installed capacity(1)

(MW)

37,000 18,500 6400 2800

Share of capacity operated by the

�rst company (%)

40 70 50 39

Share of capacity operated by the

second company (%)

14 14 23 24

Source: our estimations and AEEG (2005)

(1) including imported power

Table 2 shows the main structural features of these sub-markets in terms of maximum

power demand, available capacity and market concentration. As can be noted, Sardegna

and macro-Sicilia sub-markets are tyipical duopolies (Sardegna more than macro-Sicilia)

whereas the North and macro-South sub-markets are well-suited to be described by a

dominant �rm facing a competitive fringe model. In addition, in the North of Italy

the degree of market concentration is relatively low and there is excess of generation

capacity whereas in the South the degree of market concentration is very high and there

are problems of scarcity of generation capacity17 . Analysing separately these sub-markets,

therefore, might allow us to check the robustness of the theoretical analysis with respect

to the combined e¤ect of the di¤erent structural factors of the power market.

In the emprical literature generally two approach are used in order to estimate the

rates of passing through CO2 opportunity costs18 . One approach, the most used, relies

on the forward markets. The pass-through rates are estimated by assessing the extent

to which changes in forward power prices can be explained by changes in underlying

17Generally, security of supply needs a reserve margin in peaking technologies around 5-10% of the

total installed capacity. Conventionally, above (below) this threshold we face excess capacity (scarcity of

capacity).
18See Sijm et al. (2006).
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forward prices for fuel and CO2 allowances. The other approach relies on spot markets by

comparing hourly electricity prices for the period after the ETS with the corresponding

hourly electricity prices in the period before the ETS (generally the year 2004).

Since in Italy currently there are not forward markets, we are obliged to use the

second approach which implicitily assumes that factors other than CO2 and fuel costs do

not change from 2004 to the subsequent years (2005 and 2006). According to this, the

di¤erence in the electricity price during a speci�c hour after the introduction of the ETS

and the corresponding hour in 2004 would be explained by the di¤erence in fuel prices

during the hours concerned, the impact of the CO2 price and by an error term19 .

Adopting this approach would imply that we should calculate the relevant spread (i.e.

the di¤erence between the electricity price and the cost of fuel to produce an unit of

electricity of the marginal plant) in the peak and o¤-peak hours (or in a particular hour

of the day) in every day of 2005 and 2006 and compare it with the corresponding spread

in 2004.

Nevertheless we think this way of proceeding might not be well-suited to our case, for

the following reason. It is based on the comparison of prices and spreads corresponding to

the same hour (or set of hours) in each day in di¤erent years under the implicit assumption

that the marginal technology (i.e. technology setting prices) does not vary from a year to

another on hourly basis. This hypothesis might be acceptable only if the demand level in

each hour does not change substantially from a year to another or if the power generating

system is characterised by low technological heterogeneity20 (i.e. a situation in which only

one kind of technology has a positive probability to become the marginal unit in most

hours, regardless of the power demand level).

Since this is very unlikely to occur, the time series approach (without appropriate and

complicated elaborations) may lead to incorrect interpretation. Consequently, it seems

more appropriate (and simple) reasoning in terms of load duration curves instead of time

series, i.e. directly comparing prices corresponding to similar levels of power demand

in di¤erent years. This approach, moreover, is consistent with the theoretical analysis

presented above.

19See Sijm et al. (2006).
20This method is well suited to study markets where generation is mostly based on the use of a speci�c

fuel (like in Germany where power generation is mostly based on coal plants).
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Table 3: Tecnology mix in the Italian sub-markets (2005)

Enegy supply by technol-

ogy

Number of hours in which

each technology sets prices

North South North South

Gas turbine 2% 1% 1% 1%

Hydro 18% 9% 39% 3%

Oil-�red steam cycle 8% 20% 4% 43%

Gas-�red steam cycle 12% 19% 16% 43%

CCGT 45% 33% 37% 5%

Coal 13% 12% 2% 4%

Other 2% 6% 1% 1%

Total 100% 100% 100% 100%

Source: Italian Market Operator (GME) and our estimates

Furthermore, since the Italian market is the combination of (almost) separated sub-

markets (with di¤erent features in terms of market power and available capacity), the

analysis of this market as a whole might be misleading21 . To avoid this problem, it is

better analysing each sub-market separately, focusing on the North and the macro-South

sub-markets, for the reasons already explained.

The approach consists of the following steps. Firstly, it is necessary to carry out

the load duration curve and the corresponding price, fuel cost and CO2 cost curves, by

ordering power prices, fuel cost and CO2 cost by decreasing level of demand. Secondly,

the spread curve, obtained by subtracting the fuel cost curve from the price curve, is

compared to the CO2 cost curve.

The fuel and CO2 costs22 are calculated by accounting for the real plant mix in each

sub-market (tab. 3), i.e. by estimating which kind of technology is able to set prices in

21For example, since the national price (PUN) is the zonal (sub-market) weighted average price, we

might �nd a full pass-through which might be the combination of a marginal pass-through rate higher

than 1 in a sub-market and lower than 1 in another sub-market, i.e. a situation in which the overall result

is due to a trade-o¤ between complementary regional results.
22With regard to fuel prices dynamic we use data provided by the Italian Energy Authority for each

months in the year. For the CO2 price, we use the the carbon index of EEX (European Energy Exchange)

market. The other European carbon markets show very similar prices.
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Figure 6: MPTR curves: model simulation (2006 vs. 2005)

each hour. In particular, in the North sub-market it is very likely that hydro plants (in

Italy, mainly storage and pumped storage hydro plants) could be the marginal units in

the peak hours, the CCGT plants in the peak and mid-merit hours and the cogeneration

plants (based on the CCGT technology) in the (very) o¤-peak hours. In the macro-South

sub-market, instead, oil-�red and gas-�red steam cycle plants set prices in almost all hours

in the year (tab. 3).

Before proceeding it is necessary showing what the model predicts by using the real

plants mix and degree of market concentration of each sub-market. The simulation as-

sumes 20 e per tonne of CO2 (thus, below the "switching price" between coal and CCGT

plants), which is consistent with the range of variability during the period covered by this

analysis (2005 and 2006).

Figure 6 shows that in the North of Italy, where there is excess capacity and relatively

low degree of market concentration, the electricity prices should include more than the

CO2 cost (MPTR more than 1) in a relativley limited number of peak hours whereas

the MPTR should converge to 1 (or just above or below) in the remaining hours23 . This

23 In the (very) o¤-peak hours prices are set by the CHP-CCGT plants which are CCGT plants pro-
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outcome is obtained by assuming that storage hydro plants bid prices equal to the marginal

cost of the gas-�red steam cycle plants24 .

In the South of Italy, where there is not excess capacity and the degree of market

concentration is high, power �rms should not pass through any CO2 cost in a large number

of peak hours whereas the MPTR should be sensibly more than 1 in the mid-merit hours

before converging to 1 in the (very) o¤-peak hours.

viding combined heat and power generation. The overall e¢ ciency (heat plus power devided by the fuel

consumption) of these plants is around 70-80%. Their marginal cost of power production is generally

calculated by sharing the total cost between power and heat, on the basis of the energy or the exergy

content (or by subtracting the revenue from heat from the total cost). Thus the marginal cost of power

production is lower than that of the simple CCGT. With regard to the CO2 cost the procedure is quite

di¤erent. In fact, the public authority allocates the allowances on the basis of the total CO2 emissions

without sharing between power and heat. Since the amount of emissions from CHP-CCGT plants is larger

than that from a simple CCGT, the CO2 cost (per unit of electricity) will be signi�cantly higher.
24The variable cost of hydro plants is virtually zero. However, because of the scarcity of the water

supplies a shadow price, which can be viewed as variable cost, arises. In fact, generating one megawatt-

hour in a given hour implies not being able to generate one megawatt-hour in some future hour, so

determining an opportunity cost.
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Are the model estimates con�rmed by the emprical analysis? In order to answer this

question we begin from comparing year 2005 to 2004. The results are illustated in �gures

7 and 8.

As can be noted, in both macro-South and North sub-markets the change in spread

is almost everywhere negative, legitimating us to say that it is unlikely that power prices

included the CO2 cost in 2005. This result may be explained by the fact that in Italy the

CO2 emission allowances have been allocated only at the beginning of 2006. Consequently,

it is presumable that power �rms began to pass through the CO2 cost only in that year,

i.e. they decided to do not pass through the CO2 cost during 2005 (before the allocation)

also (perhaps) in order to avoid more restrictive regulation (allowance under-allocation).

The empirical analysis supports this latter hypothesis providing a framework con�rm-

ing the model predictions. In the North sub-market (�g. 9), the change in spread (2006

vs. 2005) is much higher than the CO2 cost (close to the carbon cost of a typical peaking

technology, i.e. a gas turbine plant or an oil-�red plant) in a relatively limited number

of hours (up to 1700, i.e. up to 20% on perecentage basis) in the peak period. In the
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remaining hours the change in spread is more or less equal to the CO2 cost for the CCGT

and for CHP-CCGT. The shape of the MPTR curve, therefore, is enough similar to that

predicted by the model (�g. 10), except for the interval between 2200 and 4000 hours

(between 25% and 45% on pecentage basis). In this range, in fact, the model seems to

overestimate the pass-through rate25 .

In the South of the country, the change in spread (�g. 11) is much lower than the

CO2 cost (and even negative) in a large number of hours (up to 4000, around 40% on

percentage basis) according to model simulation, while converges to the CO2 cost for gas-

�red steam cycle plants only in the (very) o¤-peak hours. Instead, in between 45% and

60%, it is sensibly more than the CO2 cost for gas-�red steam cycle plants. According

to the model estimates, in this period the dominant �rm would set prices by bidding the

marginal cost of the oil-�red plants (second marginal cost pricing). Overall, the shape of

the empirical MPTR curve (�g. 12) is very close to that predicted by the model which,

however, does not explain what occurs in the (very) peak hours (up to 15%) where it

seems to sensibly underestimate the MPTR26 .

In conclusion, looking at the overall picture suggests that the results of the simula-

tion model are enough robust. Thanks to the possibility of splitting the Italian market

into di¤erent sub-markets, the empirical analysis seems to con�rm what the model pre-

dicts about how the CO2 price pass-through depends on the combined e¤ect of market

concentration, plant mix and available capacity in the market.

4. Conclusions

In line with economic theory, carbon ETS is expected to determine a rise in marginal cost

equal to the carbon opportunity cost regardless of whether carbon allowances are allocated

25A partial explaination of this di¤erence might be that in imperfectly competitive market strategic

�rms �nd it optimal to move hydro production from hours with high demand to those with lower de-

mand (Bushnell, 2002). Looking at our speci�c case, this implies that, in a certain range of peak hours

(presumably those with lower demand), the increase in prices due to ETS under imperfect competition

might equal the CO2 cost for CCGT whereas, under perfect competition, this increase would equal the

CO2 cost for gas-�red steam cycle plants. Consequetly, the MPTR might be signi�cantly less than 1.
26This might be due to a particular event occurred in the beginning of 2006 in Italy. From January to

April 2006, in fact, there was a shortage of gas importation from Russia. In order to partly save natural

gas storage, public authorities allow power �rms to increase the use of heavy fuel oil (higly polluting and

costly, given the very low electrical e¢ ciency of the old oil-�red power plants)). This might lead to a

change (increase) in the perceived price cap.
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free of charge or not. Hence, common sense would suggest that �rms in imperfectly

competitive markets will pass-through into electricity prices only a part of the increase in

cost.

Instead, the theoretical analysis carried out in this paper shows that the result is

ambiguous. The increase in price can be, in fact, either lower or higher than the marginal

CO2 cost depending on several factors: (1) the degree of market concentration, (2) the

plant mix operated by either the dominant �rm or the competitive fringe, (3) the price

of the CO2 emissions allowances; (4) the available capacity in the market (whether there

is excess capacity or not). Furthermore the outcome substantially depends on the power

demand level, i.e. if we look at the peak or o¤-peak hours.

In the peak hours, the marginal pass-through rate (MPTR) is certainly less than 1

under scarcity of generation capacity whereas, under excess capacity, power prices include

the full marginal carbon opportunity cost (and even more).

In the o¤-peak hours the MPTR may be less than 1 only when there is "trade-o¤ in

the plant mix" (i.e. the technology with lower variable cost is the worse polluter, such as

in the case of coal plants vs. CCGT) and the share of most polluting plants is enough

high (regardless of whether there is excess capacity or not).

In order to check the robustness of the model estimates we have carried out an empirical

analysis of the Italian market, which is an emblematic case of imperfectly competitive

market. However, market power is asimmetrically distributed across the country. It is

relativley low in the North where, moreover, there are excess capacity and "trade-o¤ in

the plant mix". It is high in the South where, instead, there is scarcity of generation

capacity but not "trade-o¤ in the plants mix" (i.e. the technology with lower variable

cost is also the cleaner technology, such as in the case of gas �red vs. oil-�red steam cycle

plants).

By analysing separately these two sub-markets, we �nd results con�rming the model

predictions. In particular, in the North sub-market power prices include more than the

marginal CO2 cost in a relatively limited number of peak hours (up to the dominant �rm

prefers to use his relatively low market power). In the o¤-peak hours, the MPTR is equal

to 1 (or just below). In the macro-South sub-market, the marginal pass-through rate

is much lower than 1 (and even nil) for almost all the peak hours whereas power prices

include much more than the CO2 cost in o¤-peak hours (converging to the CO2 cost in
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the very o¤-peak hours).

An overall picture, therefore, which seems to support the model simulations and sug-

gests the following consideration. Market power can really determines a deviation from

the "full pass-through" rule but we can not know which is the sign of this deviation,

a priori, i.e. without before carefully taking into account the structural features of the

power market.

5. Appendix

Proof of Lemma 1. It is immediately intuitive that when K � K the system

marginal price equals p (for Kc = 0) or MCc (for Kc = Kc). When K < Kf , pure

Bertrand equilibria (�rst marginal cost pricing) arise and prices equals the marginal cost of

the most e¢ cient plants (MC). In fact, on the one hand, whenever the demand is so high

that both leader�s and fringe�s least e¢ cient units can enter the market, the dominant �rm

would not gain any advantage by competing à la Bertrand, i.e. by attempting to undercut

the rivals. Therefore, he will maximize his pro�t by bidding the price threshold27 . On the

other hand, whenever the power demand is lower than the fringe�s power capacity in most

e¢ cient plants, competing à la Bertrand is the only leader�s available strategy in order

to have a positive probability of being dispatched. In consequence prices will converge to

the marginal cost of the most e¢ cient plants.

It remains to identify the leader�s optimal choice on K 2
i
K;Kf

i
28 . Under the

assumptions of the model, each generator in the competitive fringe has a unique dominant

strategy whatever is the market demand: bidding according to its own marginal cost of

production (which, after the implementation of the ETS, includes the carbon opportunity

cost). By converse the best choice of the dominant �rm might consist in (1) bidding the

price cap (p, if there is not excess capacity, i.e. Kc = 0) or the backstop price (MCc, if

there is excess capacity, i.e. Kc = Kc) or in (2) bidding MC29 .

Let �d1 and �
d
2 be the pro�ts corresponding to the �rst and second strategies above,

27Strictly speaking, only o¤er prices of units that may become the marginal units (i.e. units belonging

to the group b) need equal the price cap or the backstop price.
28Note that assuming a dominant �rm with competitive fringe model, rather than an oligopolistic

framework, assures that equilibria in pure-strategy do exist. For an explanation of why equilibria in pure

strategies do not exist in the case of oligopolistic competition, see von der Fehr and Harbord (1993).
29Strictly speaking, bidding MC for units of kind b and p � MC � � (where � ' 0+) for units of kind

a.
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respectively. Whenever the least e¢ cient units could enter the market (i.e. K(H) > K),

the pro�t the dominant �rm earns by choosing the �rst strategy (i.e. 8H 2
�
H;H

�
) is

�d1 = (bp�MC) [K(H)�KH (1� �)]�
Xz

i=1

X
j=a;b

�
kijf

i
j � ptpE

i

j

�
(A1)

where f ij is the capital cost per unit of installed capacity of the unit i-th unit belonging

to the group j of plants and E
i

j the amount of allowance allocated (free of charge) to the

generic plant i belonging to the group j.

If the dominant �rm chooses the second strategy, he earns

�d2 =
�
MC �MC

�
�d�KH �

Xz

i=1

X
j=a;b

�
kijf

i
j � ptpE

i

j

�
(A2)

where bp =
8>><>>:
p for Kc = 0

MCc for Kc = Kc

Therefore the leader�s optimal strategy is bidding bp if and only if �d1 � �d2, i.e. if and
only if

K �
�
�d�� + (1� �)

�
KH = eK(�; �d; �) (A3)

where � =

�
MC �MC

�
bp�MC

WhenK 2
i
K;Kf

i
(i.e. H 2

i
H;Hf

i
) the pro�t the dominant �rm earns by choosing

the �rst strategy is

�d3 = (bp�MC) [K(H)�KH (1� �)]�
Xz

i=1

X
j=a;b

�
kijf

i
j � ptpE

i

j

�
(A4)

and by choosing the second strategy, the pro�t is

�d4 =
�
MC �MC

� �
K(H)�KH�

f (1� �)
�
�
Xz

i=1

X
j=a;b

�
kijf

i
j � ptpE

i

j

�
(A5)

Thus the dominant �rm will choose the �rst strategy (bidding the price cap or the

backstop price) if and only if �d3 � �d4; i.e. if and only if

K � (1� �)
"
(1� �f )
(1� �) + �

f

#
KH =

eeK(�; �f ; �) (A6)

Therefore the leader�s best reply is a function of power demand. We still have to demon-

strate that the two critical values eK and eeK never work together, i.e. if eK 2
�
K;K

�
theneeK =2

i
K;Kf

h
and vice versa.
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Given that K
f
= (1 � �f )(1 � �)KH ; K

d = �d�KH ;K
f = (1 � �)KH and K =�

�d� + �f (1� �)
�
KH , equation (A3) can be rewritten as

K (H) � eK(�; �d; �) = �Kd +Kf (A7)

and equation (A6) as

K (H) � eeK(�; �f ; �) = K
f

1� � +K
f (A8)

Assume for instance eK > K. From (A7)
K
f

(1� �) > K
d and from (A8) eeK > K: Thus,eeK =2

i
K;Kf

h
:

Similarly suppose eeK < K. From (A8) Kd >
K
f

1� � and from (A7) eK < K. Thus,eK =2
�
K;K

�
:

In addition, from (A7) and (A8), if eK = K then eeK = K and vice versa.

Finally, note that eK < K and eeK > Kf .

Last some comparative statics,

@ eK
@�d

= ��KH > 0;
@
eeK

@�f
= �(1� �) �

1� � KH < 0

In fact, when � > �; increasing fringe�s share of most e¢ cient plants implies that

bidding the marginal cost of the least e¢ cient plants becomes less pro�table for the

dominant �rm compared to bidding the price cap or the backstop price (�d4 in equation

(A5) decreases whereas �d3 in equation (A4) does not depend on �
f ). Inversely when we

look at the case of � < � and at the rise of �d: This time increasing leader�s share of

most e¢ cient plants implies that bidding the marginal cost of the least e¢ cient plants

becomes more convenient for the dominant �rm (�d2 in equation (A2) increases whereas

�d1 in equation (A1) does not depend on �
d). Furthermore,

@ eK
@�

= �d�KH > 0;
@
eeK
@�

=
(1� �)(1� �f )

(1� �)2
KH > 0

Thus, market power is a decreasing function of �.

5.1. Proof of Proposition 1. This proposition follows directly from Lemma 1. SinceeK and e~K never work together and provided that when eK = K then eeK = K (see the proof
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of Lemma 1 above); in order to identify the critical value of � it su¢ ces carrying out the

locus of points of � (e�) that eK = K which is equal to the locus of points of � (ee�) thateeK = K e� = ee� = � = �f � 1
�f � 1 + �d(� � 1)

Furthermore, note that eK < K and eeK > Kf .

5.2. Proof of Corollary 1. By di¤erentiating � with respect to ptp we get

@�

@ptp
=

8>>><>>>:
(eb � ea)(vc � va)� (ec � ea)(vb � va)

[(vc � va)� ptp(ec � ea)]2
under excess capacity

(eb � ea)(p� va) + ea(vb � va)
(p� va � ptpea)2

without excess capacity

Consequently,
@�

@ptp
< 0 when

8>>><>>>:
(ec � ea)
(vc � va)

>
(eb � ea)
(vb � va)

under excess capacity

�ea
(p� va)

>
(eb � ea)
(vb � va)

without excess capacity

This condition always (never) is satis�ed when "trade-o¤ in the plant mix" combines

with excess capacity (without both "trade-o¤ in the plant mix" and excess capacity).

Since eK and eeK are increasing functions of � (see comparative statics in proof of Lemma

1 above), market power surely increases (decreases) in ptp when "trade-o¤ in the plant

mix" combines with excess capacity (without both "trade-o¤ in the plant mix" and excess

capacity). Otherwise, the ETS can determine either a rise or a decrease in market power

depending on the relative values of variable costs and emission rates of the di¤erent kinds

of technologies.

5.3. High allowance prices. For the sake of simplicity, we report only examples

referring to the Scenario 1. Figures 13 and 14 refer to an allowance price around 43

e/tonCO2, just above the "switching price" between coal and CCGT plants. As can

be noted, the outcome is very similar to that under low allowance prices (see subsection

2.3.)30 . This time, however, it is more likely that the MPTR could be less than 1 in the

o¤-peak hours.
30As pointed out in note 11, explaining how the ETS can impact on market power under high allowance

prices is beyond the scope of this paper. However, it is possible to demontsrate that bK > bK� if the

allowance price is not very high (even if above the "switching price). This is the case simulated in �gs

A1 and A2.
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Figure 13: Marginal pass-through rate (MPTR) curve (Scenario1): high allowance prices

and without excess capacity (�d = �f )
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Figure 14: Marginal pass-through rate (MPTR) curve (Scenario 1): high allowance prices

and excess capacity (�d = �f )
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5.4. Technical parameters of power plants. Table 4 reports variable costs, emis-

sion rates and energy e¢ ciencies of power generating technologies adopted throughout the

paper.

Table 4: Technical parameters of the power generating plants

Oil-�red

steam

cycle

Gas-�red

steam

cycle

CCGT Coal

plant

CHP-

CCGT

Variable cost (v);

e/MWh

60 56 42 25 33

CO2 emission rate

(e); kg/MWh

750 500 400 800 550

E¢ ciency (�) 0.35 0.40 0.50 0.40 0.70(1)

(1) Including heat (i.e. useful heat plus power divided by fuel consumption)
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