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Abstract

This paper contributes to the induced innovation literature by extending the anal-
ysis of supply and demand determinants of innovation in energy-efficient technologies
to account for international knowledge flows and spillovers. In the first part of the
paper we select a sample of 38 innovating countries and we study how knowledge
related to energy-efficient technologies flows across geographical and technological
space. We demonstrate that higher geographical and technological distances are as-
sociated with a lower probability of knowledge flow. In the second part of the paper,
we use our previous estimates to construct stocks of internal and external knowledge
for a panel of 17 countries and present an econometric analysis of the supply and de-
mand determinants of innovation accounting for international knowledge spillovers.
Our results confirm the role of demand-pull effects, as proxied by energy prices,
as well as that of technological opportunity, as proxied by the knowledge stocks.
In particular, this paper provides evidence that spillovers between countries have a
significant positive impact on further innovation in energy-efficient technologies.
Keywords: Innovation, Technology Diffusion, Knowledge Spillovers, Energy-Efficient
Technologies
JEL Codes: O33, Q55, C13.

1 Introduction

Energy efficiency and conservation are repeatedly cited as prominent options for achieving
both climate and energy security goals. Energy sources are a fundamental ingredient of
economic growth, which can however be hindered by the negative externality associated
with emissions from fossil fuel combustion. Researchers and policy makers recognize that
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technology could potentially change the dynamics that characterize climate and energy
systems (Weyant and Olavson, 1999). Understanding technological change (TC hence-
forth) and the response of technology to economic incentives will be crucial in order to
design the appropriate energy and environmental policies.

In the field of energy economics the potential of TC is related to concerns for energy
supply and to the complexity of energy systems. Lessening the dependence from imported
fossil fuels as well as mitigating the effects of rising energy prices are critical issues both
for developed and developing countries. Given the crucial role of technology in easing
this dependence and in providing alternative sources of energy (i.e. renewable), focus of
the debate is the interplay between technological change and energy and environmental
policy. Moreover, the inherent complexity of energy systems implies substantial and
irreversible investments that have inter-temporal and international effects, raising concerns
for possible lock-in effects.

TC can and is expected to play a major role in easing, if not breaking, the external
effect of higher greenhouse gases emissions. The IEA Energy and Technology Perspec-
tives (IEA, 2008b) suggests that energy efficiency improvements in buildings, appliances,
transport industry and power generation represent the largest and least costly options to
reduce CO2 emissions. In particular, energy-efficiency is expected to contribute for more
than 36% of the reductions needed to meet IEA’s BLUE MAP scenario, namely a 50%
decrease in CO2 emissions by 2050. These considerations are coupled with the claim that
the rate and direction of technological change can be induced by policy intervention (Jaffe,
Newell, and Stavins, 2003). Of course, energy efficiency takes many forms, from simple
administrative measures to more complex and less immediately implementable techno-
logical solutions. Over the longer term, the latter are obviously the more relevant, thus
worth of close investigation.

Given the global nature of environmental and energy issues, a particularly important
role is played by the diffusion of innovation at the international level. Since TC is not
fully appropriable, it is likely to affect not only growth in the innovating country, but also
in the neighboring ones through knowledge spillovers. Moreover, the majority of Research
and Development activities (R&D) are carried out in a few developed countries, with the
United States, Japan and Germany among the top innovators. If technological change has
to play a role in addressing global issues, it is crucial to indentify the channels through
which technology diffuses at the international level and to assess what its spillovers are.

The induced innovation literature first proposed by Hicks (1932) posits that both
increased demand and increased technological opportunity in a given country affect the
production of additional knowledge. Popp (2002) reaches this conclusion in his analysis of
inducement in energy-efficient technologies for the United States. There are however two
important issues that need to be addressed in this regard. First, for the above-mentioned
reasons it is necessary to account for international knowledge flows and spillovers, namely
to what extent innovation carried out outside national borders is available in a given
country and how it affects the production of knowledge. Second, the analysis has to be
extended to other innovating countries in order to assess the validity of the conclusions
reached for the case of the US only.

The present paper contributes to the literature by addressing these two issues focusing
on innovation in the critical field of energy-efficient technologies. By using data on patent
citations the paper also investigates the empirical determinants of knowledge diffusion.
Drawing on work by Peri (2005) we study the geographical and technological channels
through which energy-efficient innovation becomes known in and available to countries
other than the innovating one. Such an analysis allows to construct weights to proxy
for the flow of knowledge between countries. These weights are used together with data
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on patents in selected energy-efficient technologies to construct measures of both internal
and external available knowledge stocks. The final aim of this analysis is to assess how
the process of innovation responds to changes in demand (as proxied by energy prices,
but also by index of energy-efficient policies and general value added in the economy)
and in technological opportunity (measured using both knowledge stock proxies), fully
accounting for knowledge spillovers. As a consequence, this paper is of relevance both
for the general literature on technological change as well as for the literature that studies
environmental and energy-efficient inducement.

The paper is organized as follows. Sections 2 briefly reviews the literature on techno-
logical change in general and as applied to environmental economics. Section 3 presents
the model used to estimate demand and supply determinants of innovation while account-
ing for international knowledge spillovers. Section 4 deals with the problems of measuring
innovative activity and provides justification on the use of patent data. Section 5 spells
out the methodology to study the geographic and technological channels of knowledge
diffusion between countries and presents data and the empirical results. Section 6 builds
the knowledge stocks and presents the results of the estimation of demand and supply
determinants of innovation with special reference to international knowledge spillovers.
Section 7 concludes.

2 Technical Change, Knowledge Spillovers, and En-
vironmental Economics

In his induced innovation hypothesis Hicks (1932) first emphasized the role of relative
factor prices in spurring invention aimed at saving on relatively more expensive production
inputs. The link between factor prices and the process of innovation was formalized
initially by Ahmad (1966), Kamien and Schwartz (1968) and Binswanger (1974). In
these authors’ framework price changes affect a firm’s decision regarding R&D investment
and efforts, thus influencing the rate and direction of innovation and resulting in biased
technological change.

In a different vein, Schumpeter (1942) viewed innovation and R&D investment as
the outcome of profit maximizing economic agents within the economy as an endogenous
response to profit incentives. This author suggested that at the heart of modern capitalism
was the process of ”creative destruction” by which innovators, attracted by the prospects
of a temporary market power, introduce in the market successful products which grant
them excess profits for a certain period, which will be subsequently displaced by other
innovations.

Following Hicks and Schumpeter, a number of theoretical and empirical analyses tried
to discern the determinants of technical change and their effects. Among the early con-
tributors to this literature are Schmookler (1966), Griliches (1984), Scherer (1986) and
many others. More recently the endogenous growth models of, among others, Romer
(1990, 1994) and Grossman and Helpman (1994) have revived the interest for technical
change and its contribution to economic growth. In these analyses, growth is modeled as
a process driven by the endogenous creation and diffusion of new technologies. In general,
research on endogenous technical change tends to focus on aggregate R&D expenditure
and neutral technological change (Jaffe, Newell, and Stavins, 2003).

Of particular relevance for the theory of TC is the debate regarding the importance
of demand versus supply determinants of innovation spurred by Schmookler (1966). Con-
tributions to the debate focusing on demand-pull versus technology-push determinants of

3



innovation include Rosenberg and Mowery (1979), Scherer (1982), Bosworth and West-
away (1984), and Griliches (1990).

In the general literature on technological change the role of international knowledge
flows and the effect of knowledge spillovers on economic growth have received much at-
tention. At a more micro level, the analysis mostly focuses on knowledge diffusion within
a given country or a given sector of the economy. Studies like Jaffe (1986) and Jaffe and
Trajtenberg (1996) develop the analysis of spillovers in technological and geographical
spaces. These studies point to the conclusion that the flow of knowledge is geographically
localized and that technological similarities between innovating and receiving entities favor
diffusion.

At the macro level, theoretical studies in the trade-growth literature emphasize the
role of international knowledge flows as a channel for growth. Rivera-Batiz and Romer
(1991), for instance, show that under certain assumptions allowing for flows of ideas re-
sults in a permanently higher growth rate. Feenstra (1996) also concludes that trade
and international diffusion of knowledge have to occur simultaneously to obtain conver-
gence in the growth rate of different countries. The empirical trade-growth literature has
however devoted little attention to identifying better proxies for measuring the flow of
knowledge across countries. The studies that confirm strong R&D externalities between
countries make assumptions about the availability of ideas across space and mostly use
trade information in order to proxy for knowledge flows. Coe and Helpman (1995), for
example, explore the effects of domestic and foreign knowledge stock on a country’s pro-
ductivity. To this end, they construct a measure of domestic knowledge stock on the basis
of own R&D expenditures and a measure of foreign knowledge stock using information
on R&D expenditures of trading partners. Peri (2005) combines both the micro-economic
approach on knowledge flows and the macro-economic analysis of spillovers. He studies
the knowledge flows across different regions of Europe and North America and then uses
this information, coupled with data on R&D investments, to construct measures of inter-
nal and external available knowledge stock for a given region. He shows that both internal
and external knowledge stock have a positive impact on aggregate innovation.

All these considerations on technical change, knowledge flows and spillovers have in-
creasingly made their way to the economics of climate change. Indeed, It is now widely
acknowledged that technological change can substantially reduce the costs of stabilizing
atmospheric concentrations of greenhouse gases. The theoretical and empirical insights of
the TC literature have therefore been increasingly incorporated in recent years in climate-
economy models designed for scenario analysis and climate policy assessment. Early
models included only an exogenous representation of technical change (see, for example,
Nordhaus (1994) and Nordhaus and Yang (1996)).

Subsequently efforts has been made to endogenize the process technical change and,
depending on the structure of the climate-economy model (top-down versus bottom-
up), different strategies have been adopted, from accounting for R&D efforts to mod-
elling learning-by-doing (among others, Grübler and Messner (1996); Goulder and Mathai
(2000); Nordhaus (2002); Buonanno, Carraro, and Galeotti (2003); Castelnuovo, Gale-
otti, Gambarelli, and Vergalli (2005)).1 The importance of knowledge spillovers in the
representations of the sources of TC in formal models of energy and the environment
has been extensively discussed by Weyant and Olavson (1999), Clarke, Weyant, and Ed-
monds (2006), and Clarke, Weyant, and Birky (2006). In this respect Buonanno, Carraro,
and Galeotti (2003) appear to have been the first to incorporate international knowledge

1See Löschel (2002) for a review of the different methods used to model technical change in climate
models.
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spillovers in an applied climate-economy model.
The results of model simulations critically depend not only on the way - among other

aspects - technical change is modeled, but also on parameter calibration: they therefore
depend very much on the fact that the magnitude of induced technical change is still
uncertain. The empirical studies which have tested the induced innovation hypothesis
specifically with respect to environmental inducement are often limited to specific sectors
or relative to a single country, thus making it hard to generalize their conclusions: see
Popp, Newell, and Jaffe (2009) and Gilligham, Newell, and Palmer (2009) for an indepth
review of the literature. Lanjouw and Mody (1995) find a strong correlation between
pollution abatement expenditures and rate of patenting for several countries, though no
econometric analysis is conducted. Jaffe and Palmer (1997) use R&D expenditures and
patents application as measures of innovative activity and data on regulatory compli-
ance costs to study whether changes in regulatory stringency are associated with more or
less innovative activity by US regulated industries. They find that lagged environmental
compliance expenditures have a significant positive association with R&D expenditures,
but that there is no relationship between compliance costs and inventive output as mea-
sured by successful applications. Newell, Jaffe, and Stavins (1999) consider the effect of
both energy prices and energy-efficiency standards on the average efficiency of a group of
energy-using consumer durables, namely room air conditioners, central air conditioners,
and gas water heaters. They show that over time, in the US changes in energy prices
induce both the production and commercialization of new models and the elimination of
old models. On the other hand, the imposition of environmental standards determines a
drop of those products which are energy-inefficient.

Finally, Popp (2002) takes a broader view and analyzes the inducement effect of chang-
ing energy prices and technological availability on energy-efficient innovations. Using data
on US patents and patent citations for the period 1970-1994 he estimates productivity
parameters capturing the usefulness (or productivity) of energy patents in a specific tech-
nology for a given year. These parameters are then used to construct a stock of knowledge
for each energy technology group he considers. Using this knowledge stock to proxy for
the supply-push determinant of innovation and energy prices as proxy for demand-pull
determinant, he empirically proves that both the demand and supply-side factors play an
important role in the inducement of innovation.

This influential analysis is almost invariably focused on innovation activity within the
United States, a single top-innovator country. A legitimate question is therefore to ask
whether the results are also confirmed for other less innovative countries. Even more
importantly, being limited to a single country, the analysis does not account for the
international diffusion of knowledge and the consequent spillover effects across countries.
As shown by the literature on innovation economics demonstrates, firms, regions and
countries benefit significantly from innovation carried out in other firms, regions and
countries, although the magnitude of this benefit is not certain. The role of spillovers is
crucial, given that the majority of R&D effort, and subsequent innovation, is carried out
in a limited number of developed countries. Finally, the study of knowledge spillovers
in energy-efficient technologies is important for assessing the true potential of technical
change with respect to environmental issues, namely the reduction of the costs of climate
change associated with reductions in greenhouse gas emissions. To address the two issues
just mentioned we present in the following section a general framework to think about
innovative activity and its determinants.
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3 Modelling Innovative Activity

Innovation activity is affected by both demand and supply factors. According to Griliches
(1990), the demand-side determinants of innovation are those macro shifts (such as shifts
in aggregate demand or population) that make inventive activity more (or less) profitable
at a given level of scientific information. On the other hand, changes in technological
opportunity include scientific and technological advancements that make additional in-
novation more profitable or less costly at a fixed aggregate or industry level of demand.
Formally:

IAt = h(ZD
t , ZS

t ) (1)

where IAt denotes innovation activity and Zt is the vector of either demand (D) or
supply (S) determinants. The latter in particular is typically taken to be represented
by technological opportunities, TOt, which enhance innovation at an unchanged level
of demand and are typically proxied by knowledge, a concept which is more amenable
to measurement. Knowledge accumulates over time but is also subject to obsolescence.
Moreover, knowledge originates from many places, sectors, countries, especially in an era
of globalization. There can therefore be important spillover effects from the knowledge
formed in country/sector i to innovation activity taking place in country/sector j. We
can capture this idea as follows:

TOt = g(Kint
t−1, K

ext
t−1) (2)

where Kt−1 denotes the end-of-period stock of either internal (int) or external knowledge
(ext). Using (2) into (1) yields:

IAt = h(ZD
t , Kint

t−1, K
ext
t−1) (3)

What are the factors affecting innovation from the demand side? We can think of three
elements, all in expected terms. One is energy prices pE

t which signal the expected cost of
fossil fuel-based technologies: innovation in energy-efficient technologies can be spurred
by a high cost of oil/gas/coal because existing fossil-based technologies become more
expensive to operate. It can also be spurred by a high price of electricity suggesting - at
unchanged environmental regulation - that it is convenient to invest in new technologies.
A second driver of demand is likely to be given by the state of the economy, which can
be captured by economy-wide or sectoral value added, V At. A third and final component
likely to be important is the state of environmental and energy policy in a given country,
EPt: ceteris paribus, a country characterized by the presence of regulation regarding
energy efficiency and the environment is going to be a place where innovating on existing
energy technologies is most relevant. We can summarize the above considerations from
(3) as follows:

IAt = f(pE
t , V At, EPt, K

int
t−1, K

ext
t−1) (4)

where we expect all impacts to be positive. There are two issues which need to be
addressed to make (4) operational: how to measure innovation activity and the stocks of
knowledge. We now turn to these aspects.
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4 Measuring Innovative Activity and Knowledge

Stocks

Empirical analyses of the innovation process face the inherently difficult task of finding
proper proxies for the measurement of innovative activity and technical change as well as
for the flow of knowledge between different innovating entities. In this paper we follow
the well-established literature that uses patent data to proxy for innovation and patent
citations as a measure of knowledge flow between different innovating firms, regions or
countries.

Traditionally, two indirect methods have commonly been used in the literature in
order to proxy for innovation: R&D investments, which are a measure of the input in the
innovation process, and patent data, which proxy for the output of innovative activity.2

Both are indirect measures of innovation, which shed light only on certain aspects of
technological change (Basberg, 1987).

The assumption that patent data reflect innovative activity has been validated in a
number of studies.3 Among the first, Pakes and Griliches (1984) show that there is a
strong relationship between R&D expenditures and the number of patents received at
the cross-section level, across firms and industries. Griliches, Pakes, and Hall (1987)
study the value of patents as indicator of economic activity and conclude that patents
data represent a viable resource for the analysis of technological change. At the macro-
level, Pavitt and Soete (1980) use patent data to analyze the relative competitiveness of
various countries: they construct a “revealed technology advantage” index that allows to
compare and contrast the international location of inventive activity in different industries
(Griliches, 1990). Others, such as Sokoloff and Khan (1990), use patent data to study
the regional patterns of economic growth and the externalities of population size and
agglomeration.

Even if useful, patents are however only an imperfect indicator of inventive activity.
There are certain limitations in using patents as a proxy for innovation, namely that:

“not all inventions are patentable, not all inventions are patented and the
inventions that are patented differ greatly in “quality”, in the magnitude of
inventive output associated with them” (Griliches, 1990, p.1669)

In addition to these general limations, it is also important to notice that patent data
can shed light only on the dynamics of embodied technological change, while it can not
provide any insight on disembodied technological change, such as for example the learn-
ing process by which individuals can increase the productivity of the production process
thanks to “learning by doing”, is clearly left out of a study based on patent data.

Keeping in mind the limitations outlined above, the use of patent data with the pur-
pose of investigating technological change and spillovers within energy-efficient product
innovation has several advantages. First, patent data is available at the disaggregate level

2Patents are a set of territorial exclusionary rights granted by a state to a patentee for a fixed period of
time (usually 20 years) in exchange for the disclosure of the details of the invention. Stated purpose of a
patent system is to encourage invention and technical progress both by providing a temporary monopoly
for the inventor and by forcing the early disclosure of the information necessary for the production of the
new item or the operation of the new process (Griliches, 1990). To be eligible for a patent, an invention
(device, process, etc.) needs to meet certain patentability standards. First, the invention has to be new,
meaning that it was not known before the application of the patent. Moreover, the invention should
involve a non-obvious inventive step and should be useful or industrially applicable.

3For a review see Griliches (1990).
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for a number of countries, which allows the identification of both energy-efficient tech-
nologies and of the source country of each innovation. Using information on patents in
energy-efficient technologies we can proxy for innovation and construct measures of inter-
nal and external knowledge stock for each innovating country. Moreover, in order to be
adopted and deployed, energy-efficient products need to enter the market and to reach a
wide number of potential users. For this reason, we believe that product innovation in
this field is likely to be patented.

If patents are a proxy for innovative activity, patent citations have been used in order
to track the diffusion of innovations: granting a patent is a legal statement confirming
that the innovation represents a useful improvement, over and above the previous state
of knowledge. Citations serve the legal duty of delimiting the scope of the property right
conveyed by the patent, and therefore they represent “the paper trail” left by knowledge
diffusion, as Jaffe, Trajtenberg, and Henderson (1993) and Jaffe and Trajtenberg (1996),
which are among the studies that use citations patterns to study the extent of spillover
localization both in the United States and abroad.

Traditionally, the use of citations patterns has been almost exclusively limited to data
relative to patents granted by the United States Patent and Trademark Office (USPTO).
Only in the United States, in fact, has an inventor the legal duty to declare and cite
any previous knowledge on which his/her innovation was built. Jaffe, Trajtenberg, and
Fogarty (2000) estimate that about one fourth of citations included in a USPTO patent
indicate a very important knowledge flow, one fourth of citations indicate an important
knowledge flow, while the remaining citations do not give significant information as they
have been mostly added for strategic or legal reasons. In other patenting offices, such as
the European Patent Office (EPO), the French or German Patent Offices, citations do not
indicate any knowledge flow since most of them are added by the examiner of the patent
as well as by the lawyer of the innovator (OECD, 2009). For this limitation in the present
analysis of knowledge flows and spillovers we chose to use data relative to patents granted
to all innovating countries by the USPTO.4

The patent data used in this paper are extracted from the NBER patent dataset (Hall,
Jaffe, and Trajtenberg, 2001) which contains all utility patents granted between 1963 and
2002 by the United States Patent and Trademark Office (USPTO) for a total of more than
3.4 million patents. Information about each patent includes patent number, application
date, grant date, technological classification of the patent, name of the applicants and of
the inventor as well as information on their country of residence. Starting from 1975, the
database includes also information on citations received by each patent in the sample.

Using the USPTO patent classification system and following Popp (2002) we select
patents which relate to eleven energy-efficient environmentally-friendly technologies for
a group of 38 countries: 6 supply technologies (coal gasification, coal liquefaction, solar
energy, batteries for storing solar energy, fuel cells, using waste as fuel) and 5 demand
technologies (recovery of waste heat for energy, heat exchange, heat pumps, Stirling en-
gines, continuous casting processing of metal). We assign each patent to the country of
residence of the inventor.

The sample so selected is composed of 22,091 patents granted to innovators Ameri-
can and foreign innovators between 1975 and 2000. Table 1 shows the list of countries

4We are aware of one other study by Pillu and Koleda (2009) in which the authors use information on
citations in the five major patent offices (namely USPTO, Japan Patent Office, German Patent Office,
French patent Office and the UK Patent Office) in order to assess the productivity of foreign research on
domestic innovation, using a methodology similar to Popp (2002). The main concern with this approach
is, as already pointed out, that citations in countries other than the US are not good proxies for the flow
of knowledge since they are mostly added by examiners.

8



considered and information on the distribution of the patenting activity over the period
analyzed. The US accounts for more than 50% of innovation in the sample, but a sig-
nificant number of patents are also granted to other countries, with Japan and Germany
being the second and third innovators.

Table 2 presents some descriptive statistics: over the whole period more than 60% of
the innovators are granted only one patent and only 0.48% of the innovating firms and
individuals are granted more than 100 patents. In addition we notice that the value of the
patents, as proxied by citations, included in the sample is highly skewed: more than 53%
of the patents obtain one or no citation over the period 1975-2000, suggesting that the
innovation they represent has been of no or little value for future innovators. Furthermore,
close to 42% of the patents in the sample receive between 2 and 10 citations, and only
4.77% obtain 11 or more citations. These last innovations are the ones that have been
particularly important for future innovators to build on.

One important limitation of the dataset we use is the so-called “home bias” problem.
This refers to the fact that any American innovator is likely to patent his innovation first
in the US market, for this represents his/her home market. For innovators from all other
countries, on the other hand, the US market is not necessarily the first natural outlet for
patenting. If it is true that the US market represented the biggest market for technologies
well into the 1990s, it is also likely that innovators coming from Europe (for example)
are likely to patent their innovations first in their home country or at the EPO before
exporting the innovation to the United States. This implies that the innovation we observe
from foreign innovators in the US are most likely the most economically valuable patents,
those that are duplicated in the US after begin granted in the home country. As a result,
non-US patents are likely to be of higher value, on average, than the US patents present in
the sample. Keeping in mind this limitation of the data, we carry out sensitivity analysis
on our results to account for differential economic value of the patents as well as to make
sure that the results obtained are robust to the exclusion of the US from the sample.

Turning now to the measurement of the internal and external knowledge stocks, we
assume that the amount of external knowledge available to country i at the beginning of
time t is the sum of the knowledge produced abroad that has crossed country i ’s border.
Formally:

Kext
i,t−1 =

∑
j �=i

φi,jK
int
j,t−1 (5)

where φi,j represents probability that an idea generated in country j is accessible to
country i and where stocks are measured end-of-period. Such a definition indicates that
diffusion of knowledge across countries is not perfect: only a fraction φi,j of the knowledge
produced in country j is accessible to country i at any time t.

Because of the relevance of φi,j , in the following section we measure it using data on
patent citations, which proxy for the flow of ideas between two given countries, and study
its determinants. This yields an estimated value φ̂i,j which we use to build the external
knowledge stock available in country i at time t as in equation (5) and we present estimates
of equation (4).
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Table 1: Patents in Energy-Efficient Technologies by Innovating Country, 1975-2000.
Country Number of Patents Percentage
United States 12,229 55.36
Japan 3,662 16.58
Germany 1,952 8.84
France 862 3.90
Canada 503 2.28
Sweden 426 1.93
United Kingdom 376 1.70
Switzerland 370 1.67
Italy 213 0.96
Netherlands 185 0.84
Israel 179 0.81
Austria 171 0.77
Taiwan 169 0.77
Australia 169 0.77
South Korea 130 0.59
USSR/Russian Federation 81 0.37
Finland 76 0.34
Belgium 56 0.25
Denmark 51 0.23
Norway 46 0.21
Hungary 31 0.14
Spain 29 0.13
South Africa 23 0.10
New Zealand 15 0.07
Luxembourg 15 0.07
People’s Republic of China 12 0.05
Brazil 10 0.05
Argentina 9 0.04
Czechoslovakia 7 0.03
Mexico 7 0.03
Yugoslavia 6 0.03
Greece 5 0.02
India 5 0.02
Romania 3 0.01
Bulgaria 2 0.01
Philippines 2 0.01
Ireland 2 0.01
China, Honk Kong S.A.R 2 0.01
Total 22,091 100
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Table 2: Patents in Energy-Efficient Technologies by Innovating Country, 1975-2000.
Total Patents 22,091
Non-assigned/Individuals 4,591
Assigned 17,500
Number of assignees 4,003
Assignees with:
1 patent 60.52%
2 patents 14.16%
3-10 patents 18.14%
11-20 patents 3.17%
21-50 patents 2.65%
51-100 patents 0.87%
more than 100 patents 0.48%
Patents receiving:
1 citation or none 53.40%
2-10 citations 41.83%
11-40 citations 4.69%
more than 40 citations 0.08%

5 Knowledge Flows and the Effect of Geography and
Technological Distance

Following Caballero and Jaffe (1993) and Peri (2005) we model the probability that an
idea generated in country j in time t0 becomes available in country i at time t as the
combination of two exponential processes:

φi,j(l) = ef(i,j)(1 − e−β(l)) (6)

where l = t−t0 is the citation lag, the time elapsed from t0, grant date of the cited innova-
tion, and the time of citation t, year of application of the citing patent. The probability of
citation φi,j(l) is a function of bilateral characteristics of inventing and receiving regions
and of the time elapsed since invention l. The term 1−e−β(l) indicates that the likelihood
that innovation originating in country j is available in country i grows with the citation
lag. The term ef(i,j), on the other hand, indicates that the probability that country i
learns an idea coming from country j depends on a series of bilateral characteristics that
influence the diffusion of ideas between different countries. This formulation assumes that
the effects of the bilateral characteristics and of time act in a multiplicative way. As time
goes by, more of the ideas produced in a region are available in any other country (Peri,
2005).

Previous studies have shown that geography plays an important part in the diffusion
process, as the probability of learning an idea is higher the smaller the geographical dis-
tance between the citing and cited entities. The main conclusion of these studies is that
diffusion is geographically localized (Jaffe, Trajtenberg, and Henderson, 1993; Jaffe and
Trajtenberg, 1996). In addition, much research points to the important contribution of
trade to the international flow of ideas (Coe and Helpman, 1995; Keller, 2004). Cultural
factors are also important: Keller (2002) and Peri (2005) demonstrate that a common
language has a positive effect on the diffusion of knowledge. Finally, technological special-
ization affects diffusion (Jaffe, 1986; Branstetter, 2001): the flow of knowledge is higher if
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the innovating firms, regions or countries are similar in their technological characteristics.
We note that it is important to analyze jointly the effect of geography and of technological
specialization in the flow of knowledge because technologically similar firms tend to also
cluster geographically. As a consequence, only looking at the geographical determinants
can over-estimate their contribution (Jaffe, Trajtenberg, and Henderson, 1993).

We study here the effect of geography and technological distance on the diffusion of
knowledge. To this end, we assume that the knowledge flow across countries is time
invariant and, following Peri (2005)5, we transform equation (6) as follows:

φi,j = Cle
f(i,j) = exp

[
a +

N∑
n=1

bnxn
i,j

]
(7)

where Cl = 1 − e−β(l). In this specification, the relative intensity of knowledge flow
between country i and country j depends on N bilateral characteristics of the cited and
citing countries. The assumption that knowledge flow is time invariant, in the sense that
it is independent of the citation lag, is limiting, but a sensitivity analysis will be carried
out and the validity of this hypothesis will be assessed by estimating the coefficients for
different values of the citation lag, namely 5, 10, 15 and 20 years.
The explanatory variables in (7), which capture the bilateral characteristics that affect
knowledge diffusion, are identified on the basis of the knowledge diffusion literature out-
lined above and are taken to be the following:

• x1
i,j is a dummy equal to 1 if the citing and cited country are different, indicating

that knowledge has crossed a national border;

• x2
i,j is the geographical distance between citing and cited countries;

• x3
i,j is a dummy equal to 1 if the citing and cited country do not belong to the same

trade area, indicating that knowledge crossed a trade bloc border;

• x4
i,j is a dummy equal to 1 if the citing and cited countries have different official

languages, indicating that knowledge crossed a linguistic border.

• x5
i,j is a technological index adapted from Jaffe (1986).6 This index uses information

on the distribution of the patents of each couple of countries i and j to measure their
distance in technological space. The value of the above index is between 0 and 1 and
it is equal to 0 for countries which have the same distribution of patenting across
the different technologies considered in the analysis. This index of technological
distance is expected to be negatively correlated with the probability of observing a
citation (and therefore with the probability that knowledge flows between the two
countries) since the majority of citations are between the same technological classes.

5Peri (2005) uses a similar approach in order study the flow of patented knowledge across different
regions of North America and Europe. Three main reasons support the need for a similar study that
focuses on innovation in energy-efficient technologies. First, Peri (2005)’s analysis is based on patterns of
diffusion in overall patenting activity and the conclusions he presents should be tested when considering
energy-efficient innovations. Second, Peri (2005) focuses mainly on analyzing the flow across geographical
space and only briefly looks at the flow across technological space. Instead we are interested in a deeper
analysis of the contribution of technological distance to knowledge flow due to the peculiar nature of
energy-efficient innovations and their complexities. Finally, Peri (2005)’s analysis is focused only on
regions in North America and Europe, while our analysis looks at the flow of knowledge across countries,
both more and less developed.

6A more detailed description of this and the following technological indexes can be found in the
appendix.
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The more similar are the two countries in technological space, the more they are
likely to cite each other.

• x6
i,j is adapted from MacGarvie (1996) and uses information on average forward

citations received by the patents of the citing country to measure its the technological
development with respect to the cited country. This index equals zero when the
patents granted in the citing country are on average as cited, and therefore as
important for future innovation, as those developed by the cited country. Similarly,
this index is lower than zero when the patents granted to the citing country are
of lower importance (less cited) than those granted to the cited country and it is
greater than zero when the patents granted to the to the citing country are of greater
importance (more cited) than those granted to the cited country. This measure
could be either positively or negatively correlated with the probability of observing
a citation. In the first case, being a technological laggard negatively influences the
probability of observing knowledge flow. In the second case, conversely, a negative
correlation would indicate that technological laggards can learn more from a more
developed country.

• x7
i,j is also adapted from MacGarvie (1996) but uses information of average forward

citations to measure how sophisticated the research is in country i as compared to
the average patent in the sample by indicating whether patents in a given country
i are more or less cited relative to the average innovation. A value of x7

i,j greater
than one indicates that the country is a technological leader (above average), while
a value less than one suggests that the country is a technological follower (below
average). In the empirical analysis two dummy variables are constructed, one equal
to one if both citing and cited countries are technological leaders and one equal to
one if both citing and cited countries are technological followers.

The problem in estimating equation (7) is that the diffusion parameter φi,j is not
observable, but Peri (2005) shows that it is possible to use observable patent citations ci,j

in order to proxy the diffusion of knowledge:

ci,j = exp

[
ai + aj +

N∑
n=1

bnxn
i,j + ui,j

]
(8)

Notice that equation (8) includes ai and aj which represent citing country and cited
country fixed effects controlling respectively for the different propensity to cite across
countries and the different propensity to patent across countries. The dependent vari-
able, ci,j , is the count of citations received by patents originating in country i by patents
originating in country j within a given time from the grant date of the cited patent. Es-
timating the coefficients b1 . . . bn in (8) allows to study how geography and technological
specialization affect the flow of knowledge between two countries and to subsequently cal-
culate the diffusion parameter φ̂i,j for each pair of countries by substituting the estimated
coefficients in equation (7).

We construct the variable ci,j of equation (8) by counting all the citations received
between 1979 and 1998 by patents in country j coming from patents in country i within
5, 10, 15 or 20 years from the grant date, excluding self-citations, as standard in the
literature. We then associate each ci,j with information about the geographical and tech-
nological characteristics explained in the previous section. Data on geographical distance
comes from the Distance Database of Centre d’Etudes Prospectives et d’Informations
Internationale (2008).
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Equation (8) is estimated using a negative binomial approach in order to account both
for the count data nature of the dependent variable and for the over-dispersion in the
data. In particular, the advantage of the negative binomial model with respect to other
transformations of equation (8) - for example taking logs on both sides - is that it allows
to include in the analysis also those observations for which ci,j is equal to zero over the
sample period. In our case this is particularly important, since our sample includes not
only top-innovating countries, which are likely to be highly cited by any other country,
but also countries with a low number of patents over the period, and for many pairs of
countries there is no citation link in the period under consideration.

Tables 3 and 4 report the results of the maximum likelihood estimation of the neg-
ative binomial specifications for equation (8). In table 3 we present the results which
take into account only citations within 10 years from the grant date of the cited patent.
Specification I includes only the geographical determinants of innovation, while in the
specifications II-V we also add the indexes of technological distance. Table 4 presents the
results corresponding to specification IV for different values of the citation lag, namely 5,
10, 15 and 20 years from the granting of the cited patent. This table, therefore, represents
the sensitivity analysis for the hypothesis that diffusion of knowledge is time-invariant.

The results partly confirm previous findings, but also shed additional light on the
peculiarities of knowledge flow in energy-efficient technologies as compared to the aver-
age innovation. In all specifications the estimated coefficients confirm that geographical
distance, namely crossing a country border, has a negative impact on the probability
of citation (and therefore on the probability of knowledge flow between any couple of
countries). Going from specification I to specification IV, the estimated coefficient for
crossing a country border goes from −1.851 to −1.340 (while remaining highly signifi-
cant). This means that the probability of citation outside a country’s border is between
15.7% (e−1.851) and 26.2% (e−1.340) of the probability of citation within the same country.
This result confirms that not all the innovation from a country flows to other countries;
on the contrary, the majority of innovative ideas never crosses a country border. Note,
however, that moving across the different specifications and adding the technological in-
dexes as explanatory variables, the coefficient associated with crossing a country border
decreases in absolute value and that the analysis focusing only on geography provides
biased results because the effect of geography as resistance factor is overestimated.

In specification IV crossing a linguistic border is associated with a drop in probability
of citation to 81.7% of the initial level. Unlike Peri (2005), in our analysis the coefficient
associated with crossing a trade border is negative and significant and remains stable
across all specifications, confirming that trade patterns do influence the flow of knowledge.
Specifically, crossing a trade border results in a drop in the probability of citation to 74.8%
of the initial level. On the other hand, the coefficient associated with geographic distance
remains insignificant in all the specifications. As noted above, unlike previous evidence on
this aspect, the coefficient of the variable indicating additional distance from citing to cited
country is not significant. It seems reasonable to assume that once knowledge has crossed
the country border, it is not the additional geographic distance but the technological
distance that drives diffusion.

Turning to technology factors, technological distance and distance of the citing coun-
try from the cited country’s frontier, as measured by the first two indexes of technological
distance, also have a negative effect on the expected probability of observing knowledge
flow: for example, if the citing and cited country have completely different patenting pat-
terns, so that the technological distance index is equal to one, the probability of citation
drops to 12.9% of the initial level. The technological distance of cited and citing countries
from the average of the sample, measured by the leaders and followers dummies, is shown
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Table 3: Geographical and Technological Channels of Knowledge Diffusion
Specification I II III IV

Country Border -1.851*** -1.399*** -1.326*** -1.340***
(-7.59) (-5.66) (-5.37) (-5.41)

1,000 Km Further -0.016 -0.013 -0.011 -0.011
(-1.19) (-0.99) (-0.89) (-0.87)

Trade Border -0.272* -0.288** -0.289** -0.290**
(-1.96) (-2.20) (-2.23) (-2.24)

Linguistic Border -0.302*** -0.189** -0.202** -0.202**
(-3.24) (-2.22) (-2.44) (-2.45)

Technological Distance - -2.008*** -2.042*** -2.045***
- (-5.49) (-5.63) (-5.64)

Vicinity of Citing - - -0.209** -0.215**
to Frontier of Cited - - (-2.46) (-2.47)

Technological Leaders - - - 5.280***
- - - (14.36)

Technological Followers - - - -5.348***
- - - (-15.18)

Cited Country FE yes yes yes yes

Citing Country FE yes yes yes yes

Observations 1444 1444 1444 1444

Log-Likelihood -1375 -1351 -1348 -1348

Chi-Squared 8712.29 10039.17 9536.03 10298.28

Dependent variable: all citations within 10 years from grant date of cited patent.
Citations calculated omitting self-citations (citations within same institution).
Negative Binomial Estimation method, robust SE, t-statitics in parenthesis.
*, **, *** indicate significance at respectively 10%, 5%, and 1% levels.

to play an important role. If the citing and cited countries are both technological leaders,
namely their patents have a higher than average value for future patents, the probabil-
ity of citation increases to more than 196% of the initial level. On the other hand, if
both are technological followers, the probability drops to 0.05% of the initial level. The
results presented in specifications II through IV provide support for the use of different
indexes of technological distance. Adding the second and the third index does not have a
significant impact on the coefficient associated with the first (and second) index of tech-
nological distance, thus confirming that all the indexes used to capture different aspects of
technological specialization are relevant when explaining the diffusion of knowledge across
countries.

As a final remark, the results in the Table 4 show that the assumption that the
probability of citation is time-invariant, although restrictive, is supported by the data.
Indeed, the estimated parameters in table 4 are very similar across all specifications and
remain highly significant when using the different citations lags, namely 5, 10, 15 and 20
years.

6 Demand-pull and Technology-push Determinants of

Innovation

In view of the empirical analysis of the determinants of innovation as represented in
equation (4), the first step is to compute external and internal knowledge stocks. Using
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Table 4: Geographical and Technological Channels of Knowledge Diffusion
Specification 5 Years 10 Years 15 Years 20 Years

Crossing Country Border -1.209*** -1.340*** -1.337*** -1.309***
(-4.80) (-5.41) (-5.54) (-5.48)

1,000 Km Further -0.016 -0.011 -0.009 -0.009
(-1.11) (-0.87) (-0.71) (-0.74)

Trade Border -0.242* -0.290** -0.292** -0.280**
(-1.83) (-2.24) (-2.35) (-2.29)

Linguistic Border -0.229*** -0.202** -0.186** -0.168**
(-2.63) (-2.45) (-2.37) (-2.18)

Technological Distance -2.128*** -2.045*** -2.101*** -2.113***
(-5.83) (-5.64) (-6.01) (-6.25)

Vicinity of Citing -0.222** -0.215** -0.248*** -0.236***
to Frontier of Cited (-2.41) (-2.47) (-2.98) (-2.89)

Technological Leaders 4.977*** 5.280*** 5.242*** 5.318***
(12.99) (14.36) (14.87) (15.31)

Technological Followes -5.026*** -5.348*** -5.309*** -5.360***
(-13.73) (-15.18) (-15.56) (-15.97)

Cited Country FE yes yes yes yes

Cited Country FE yes yes yes yes

Observations 1444 1444 1444 1444

Log-Likelihood -1163.13 -1348 -1407.45 -1429.11

Chi-Squared 9663.53 10298.28 12907.47 10958.67

Notes: see table 3

the estimated parameters from specification III in Table 3 we construct the weights φ̂i,j as
in equation (7) to build a measure for the external knowledge stock available in any given
country according to (5). To this end, we normalize a = 0 in (7) so that, by construction,
φ̂i,j = 1. Table 5 presents the estimated weights for the external knowledge stock, with
the sending country along the rows and the receiving countries across the columns. We
observe that the percentage of knowledge flow goes from a minimum of 0.035% that the
Canada receives from Norway to a maximum of 27.2% that Italy receives from Switzerland.
While the flow of knowledge is higher between countries that are geographically close, such
as for example the northern European countries or Canada and the US, it is also true
that geography does not tell the whole story: Germany, for example, receives a higher
percentage of the knowledge produced in Japan (15.5%) than the one it receives from the
much closer Italy (15.3%).

Ideally, to construct the knowledge stock variables data on private R&D for the sec-
tor(s) of energy-efficient innovations should be used. Lacking this kind of data, we follow
Popp (2002) and Bottazzi and Peri (2007) and use patent data in order to proxy for in-
ternal and external knowledge in each country. For each technology field s the stocks are
constructed using the perpetual inventory method:

Ki,s,t = PATi,s,t + (1 − δ)Ki,s,t−1 (9)

The initial value of the stock Ki,s,t0 is calculated as follows:

Ki,s,t0 =
PATi,s,t0

(ḡ + δ)
(10)

where δ = 0.1 is the depreciation rate set at a level in line with the literature on innovation
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Table 5: Estimated Diffusion Parameters
US JP DE FR GB CA SE CH IT NL AT AU FI BE DK NO ES

US 1 0.152 0.157 0.144 0.187 0.267 0.136 0.086 0.117 0.159 0.058 0.132 0.132 0.071 0.137 0.116 0.103
JP 0.129 1 0.155 0.140 0.139 0.140 0.114 0.094 0.119 0.133 0.065 0.085 0.121 0.076 0.128 0.111 0.077
DE 0.096 0.121 1 0.191 0.191 0.113 0.172 0.093 0.169 0.140 0.121 0.091 0.182 0.118 0.135 0.162 0.111
FR 0.111 0.129 0.211 1 0.187 0.157 0.154 0.139 0.186 0.167 0.121 0.098 0.182 0.126 0.141 0.173 0.112
GB 0.144 0.133 0.221 0.203 1 0.164 0.194 0.105 0.181 0.171 0.101 0.120 0.193 0.107 0.152 0.174 0.121
CA 0.226 0.134 0.147 0.168 0.176 1 0.123 0.087 0.113 0.151 0.059 0.113 0.134 0.088 0.115 0.119 0.080
SE 0.129 0.132 0.206 0.197 0.198 0.132 1 0.103 0.132 0.211 0.071 0.075 0.231 0.067 0.154 0.141 0.100
CH 0.080 0.102 0.186 0.192 0.147 0.112 0.118 1 0.272 0.108 0.250 0.109 0.122 0.193 0.080 0.192 0.112
IT 0.082 0.098 0.152 0.164 0.138 0.096 0.095 0.191 1 0.115 0.180 0.109 0.123 0.146 0.085 0.177 0.132
NL 0.125 0.128 0.181 0.168 0.176 0.133 0.178 0.088 0.120 1 0.057 0.067 0.171 0.077 0.167 0.132 0.096
AT 0.045 0.061 0.114 0.103 0.086 0.055 0.069 0.236 0.184 0.061 1 0.083 0.076 0.172 0.045 0.157 0.082
AU 0.098 0.075 0.088 0.093 0.098 0.101 0.052 0.084 0.127 0.071 0.097 1 0.073 0.091 0.054 0.114 0.136
FI 0.111 0.115 0.180 0.166 0.178 0.122 0.217 0.109 0.124 0.173 0.067 0.070 1 0.090 0.123 0.173 0.079
BE 0.063 0.076 0.123 0.122 0.103 0.086 0.070 0.198 0.161 0.088 0.188 0.093 0.096 1 0.085 0.189 0.088
DK 0.124 0.130 0.175 0.150 0.169 0.137 0.176 0.082 0.107 0.185 0.057 0.063 0.182 0.092 1 0.148 0.080
NO 0.044 0.058 0.078 0.079 0.090 0.035 0.071 0.069 0.101 0.087 0.077 0.053 0.081 0.092 0.106 1 0.098
ES 0.086 0.072 0.110 0.101 0.109 0.081 0.099 0.106 0.131 0.099 0.083 0.138 0.087 0.082 0.073 0.104 1
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(Keller, 2002) and ḡ is the average rate of growth of patenting in the technology/field for
the period between t0 and t0 − 3. We use t0 = 1974 as the initial year to compute the
knowledge stock, while the beginning of the analysis is 1979, as a way to minimize the
impact of the way the benchmark has been calculated. We compute the external available
stock of knowledge for country i as the sum of the knowledge stocks of all other innovating
countries weighted by the respective estimated diffusion parameters φ̂i,j , as in equation
(5).

Having constructed a measure of technological opportunity, representing the supply
side determinants of innovation, we can proceed to analyze their effect together with the
demand determinants of innovation activity. In particular we are especially interested in
the role played by international technology spillovers. Our proxy for innovative activity
is the number of patents granted to country i in technology field s at time t. The count
data nature of this dependent variable suggests the use of a negative binomial model for
the estimation of equation (4).7 The estimated model reads as follows:

E [PATi,s,t] = exp

[
αis + αt + β1P

E
i,t−1 + β2V Ai,t−1 + β3EPi,t−1 +

+γ1K
int
i,s,t−1 + γ2K

ext
i,s,t−1 + εi,s,t−1

]
(11)

where E [PATi,s,t] stands for the expected number of patents in energy-efficient technolo-
gies in country i in technology field s in year t, with t being the application year of the
patent. PE

i,t−1 is the price of energy in i at time t-1, which proxies for expected energy
prices and indicates changes in the demand for innovation in energy-efficient technologies.
Ideally, different prices of energy should be used for different technologies, but since de-
tailed data are not available for all the technologies considered we use the IEA real index
for end-use energy prices for industry extracted from the IEA Energy Prices and Taxes
Database (IEA, 2008a).8

In order to proxy for the level of economic activity we include the ratio between the
innovating country GDP and the GDP of the United States at time t-1 (expressed in
percentage points) as a regressor. Such a measure is preferred to the simple level of
GDP in a given country because we recognize that patents, while useful indicators of
innovative activity, have shortcomings. In particular, the patents included in this analysis
are patents for which foreign countries require protection in the United States. Since,
as already mentioned, foreign patents are most likely duplicate patents in the USA, we
believe that considerations about the market size of the United States play a role in the
decision to ask for protection of a duplicate. Moreover, over time the United States’
relative importance as a market for technology has decreased. Adding the ration between
innovating country GDP and US GDP aims at controlling for these aspects.

7An altenative approach would be a log-log estimation in which the dependent variable is defined as
the ratio between patents in technology s in country i at time t over total patents granted to country
i at time t. This specification is more in line with the one used by Popp (2002) but it suffers from the
problem that all observations with zero patents cannot be used due to the log transformation of the
data. For this reason, we prefer the negative binomial estimation. The analysis was also carried out
using this alternative specification. The results confirm the importance of technological opportunity as a
determinant of innovation and are available from the authors upon request.

8The data used to compile the index have been chosen as the most relevant price statistics for which
comparable data across countries are available. The resulting index represents a homogenous series with
long coverage. A lot of effort was made in order to ensure that the data are internationally comparable
across all the countries considered. The index is normalized to 100 in year 2000.
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In addition to the above variables, we also try to capture the policy environment of any
innovating country in two different ways. On one hand, we include in the estimation the
level of government expenditures in energy R&D specifically targeting energy efficiency,
which is taken from the IEA Energy Technology R&D Database (IEA, 2008c). Alterna-
tively, we include a dummy variable equal to 1 if there is at least one policy targeting
energy efficiency in place in the innovating country in any given year t. Although such
an index is not very sophisticated, nonetheless an indication of the presence of policy
targeting energy efficiency should be correlated with higher levels of innovation in the
technologies we selected. Control variables in our estimation include a set of individual
fixed effects αis (country-technology dummies) as well as year dummies αt.9

Finally, to better interpret the estimated parameters associated with knowledge stocks
we normalize internal and external stocks so that a one unit change in the normalized
variable is equivalent to a 10% change from the mean value for each country/technology
group.10 Energy R&D expenditures are similarly normalized.

Table 6: Descriptive Statistics
Variable Mean Std. Dev. Min Max

Patents 4.00 15.50 0.00 210.00
Cited Patents 2.53 10.39 0.00 172.00
Own Stock 32.09 129.79 0.00 1584.38
Own Stock, cited patents 24.39 96.94 0.00 1077.94
Foreign Stock 59.01 80.25 1.09 537.80
Foreign Stock, cited patents 46.81 60.23 0.96 375.83
Price 98.59 18.95 52.57 159.93
R&D 252.58 482.91 10.03 4208.15
GDP/GDPUSA (*100) 0.15 0.23 0.01 1.00

The data available allows us to build a sample of seventeen countries (USA, Japan,
Germany, France, UK, Canada, Sweden, Switzerland, Italy, The Netherlands, Austria,
Australia, Finland, Belgium, Denmark, Norway and Spain) for which we pool observations
for all technologies over the period 1979-1998. Table 6 presents the summary descriptive
statistics of the variables. Table 7 presents the results relative to the estimation of equation
(11). The coefficients are presented as incidence rate ratios (namely as eβ) and should be
interpreted as increasing the expected probability of patenting in country i in field s at
time t.

Specification I presents results when accounting only for the effect of price and own
knowledge stock. As in Popp (2002), we confirm that both price and own knowledge stock
are positively and significantly correlated with the level of innovation in any given country.
Specifically, a 10% increase from the mean of the own knowledge stock is associated with
an innovation level 4% higher. On the other hand, an increase of one unit in the price
index is associated with a 0.4% increase in innovative activity.

Specification II extends the previous model to account for the role of external knowl-
edge stock on innovation. The coefficients associated with the own knowledge stock and
price variables are similar to the ones obtained in specification I; in addition, the coefficient

9The estimation was also carried out including separate dummy variables for time, country and tech-
nology effects. The results are in line with the ones presented in this section and are available from the
authors upon request.

10The normalization is performed as follows: Knor = (Ki,s,t/K̄i,s) ∗ 10) − 10. The resulting variables
have a mean value of 0, with a deviation of 1 unit from the mean equivalent to a 10% increase or decrease
from the mean value of the original variable. See Popp (2006).
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Table 7: Supply and Demand Determinats of Innovation: Patents Counts
Specification I II III IV IV S IV D

Own Stock 1.049*** 1.033*** 1.027*** 1.032*** 1.032*** 1.028***
(6.57) (4.63) (3.48) (4.52) (4.18) (3.22)

Foreign Stock - 1.096*** 1.101*** 1.097*** 1.116*** 0.981
- (9.14) (8.95) (9.37) (9.57) (-1.00)

Price 1.004* 1.005** 1.005** 1.006** 1.006 1.003
(1.67) (2.44) (2.17) (2.42) (1.41) (1.28)

R&D (En Eff) - - 1.013** - - -
- - (2.44) - - -

Policy Index - - - 1.386*** 1.698*** 1.220**
- - - (3.89) (3.33) (2.25)

Value Added - - - 1.052* 1.089* 1.006
- - - (1.85) (1.95) (0.21)

Country/Tech.FE yes yes yes yes yes yes

Time FE yes yes yes yes yes yes

Nr of Observations 3740 3740 3410 3740 2040 1700
Log-Likelihood -4185 -4126 -3873 -4118 -1982 -2066
Chi-Square 309154 297184 263121 264745 129737 135304

Negative Binomial Estimation, exponentiated coefficients, robust t-Statistics in parenthesis.
*, **, *** indicate significance at respectively 10%, 5%, and 1% levels.
Null hyphothesis is that each coefficient is different from 1.

associated with the external knowledge stock is highly significant and higher in magnitude
than the one associated with the own knowledge stock of any given country, indicating
that greater availability of ideas generated outside the country borders is associated with
higher levels of domestic innovation. In particular, a 10% increase from the average foreign
knowledge stock is associated with a 9.4% increase in domestic innovation. Specification
III also includes the level of R&D expenditures specifically targeting energy efficiency,
while specification IV includes the proxy for overall value added on the economy and the
index of energy-efficient policy. The results show that a unit increase of the average ratio
of own GDP over United States’ GDP raises innovation by more than 5%. In addition,
both policy expenditures as well as the presence of policy targeting energy efficiency have
a positive and significant effect on innovation: the probability of innovating is higher
for those countries whose government is committed to improving energy efficiency either
by spending public money or by passing regulation that targets efficiency. Specifically,
countries that implement policies targeting energy efficiency are characterized by a level
of innovation that is 38.6% higher than those countries which do not implement those
policies. Moreover, a 10% increase from the average public R&D spending is associated
with a 1.3% increase in private innovative activity. As pointed out above, we recognize
that the policy index we propose is not totally satisfactory, and we consider this result as
a preliminary one worth of further investigation.

The results presented so far confirm the expectation that both an increase in demand
for energy efficient technologies as well as in the knowledge stock both internal and external
to the innovating country are associated with higher levels of innovative activity. In
particular, the estimated coefficients point to the fact that a 10% increase from the average
in the external knowledge stock for any given country is associated with a higher level of
innovative activity than a corresponding increase from the average in the own knowledge
stock. This should however not lead to the conclusion that knowledge spillovers from
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other countries have a higher effect on innovation that investing in own knowledge at
home. In fact, the nature of the patent data used in this study has to be kept in mind.
For all countries but the United States, the dependent variable is the level of high value
innovation exported from the home country to a foreign market, namely the USA market.
In addition, the own knowledge stock represents the stock of own innovation that was
previously exported to the foreign market, while the external knowledge stock represents
the other countries’ innovation exported to the foreign market. Keeping this in mind,
the above analysis seems to indicate that knowledge spillovers have a higher impact on
those innovation that are valuable on the global market than an increase in own stock
of knowledge. In this sense, our study cannot shed light on properly defined domestic
innovation, as the patents we observe are only a (highly valuable) subset of all the patents
applied for in any given country (but for the USA, as explained above).

In the last two columns we repeat the estimation separately for supply (S) and demand
(D) technologies and show that the effect of demand and supply determinants of innovation
is different for the two sub-groups: the effect of the own knowledge stock is higher for
supply technologies than for demand technologies, but significant in both cases. On the
other hand, the effect of foreign knowledge stock is higher and significant for supply
technologies, but not significant for demand technologies. Such a result can be explained
considering the fact that supply technologies are the target of interest of public innovation
efforts, as they represent possible ways to reduce the dependence from fossil-fuel based
inputs and require often much higher investments than demand technologies (for example,
in case of renewable energy). As a result, innovation in this field is most likely to be
affected by changes in the demand and supply factors. As a final note, the coefficient for
the price variable is not significant in any of the two cases. Since the estimated coefficient
is very similar to the one presented for the joint analysis, the insignificance derives most
likely from the smaller sample sizes of the two analysis.

The analysis presented confirms the importance not only of considering at both the
demand and supply determinants of innovation as well as the role of external knowledge
stock in spurring additional innovation. It is to be noticed, however, that an analysis based
on simple patent counts both to proxy for innovation and to construct the knowledge
stocks rests on the assumption that any patent included in the sample has the same
innovative content. As pointed out by the innovation literature, however, the distribution
of patent value is highly skewed and not all patents represent innovations of the same
value. Therefore, attributing the same weight to all patents would not necessarily provide
correct results.

For this reason, we also propose a different approach to the estimation of equation
(11) that controls for the different innovative content of patents. In particular, we take
into account that patents receiving a higher number of forward citations have on average
a higher economic value and as a result a higher innovative content. In this second case,
PATi,s,t is defined as the number of patents in energy-efficient technologies that received
at least one citation over the period under consideration. We thus drop from the analysis
all those patents that were never cited, that is those which did not serve as the basis
to spur additional innovation. Incidentally, we note that such an approach also partly
corrects for the home-country bias present in the dataset, as those US patents that are
not important for future innovation are in this way dropped from the analysis, since they
receive no citations. In keeping with this approach, only patents with at least one citation
are used in order to construct the knowledge stocks.

The results are contained in Table 8 and generally confirm the previous findings: the
effect of demand side determinants of innovation is confirmed, but all estimated coefficients
are now higher than in the previous specifications. Also, the effect of supply determinants
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of innovation is confirmed. The coefficient associated with the own knowledge stock is
very similar to the one previously estimated, while the coefficient associated with the
external knowledge stock is higher than before, indicating that foreign knowledge stock
might have a higher impact on the production of more useful/valuable innovation. When
performing the analysis separately for supply and demand technologies, we have that the
effect of own knowledge stock is similar in both bases, while the effect of foreign knowledge
stock, price, value added and policy are positive and significant for supply technologies
but insignificant for demand technologies.

Table 8: Supply and Demand Determinats of Innovation: Only Cited Patents
Specification I II III IV IV S IV D

Own Stock 1.058*** 1.035*** 1.034*** 1.032*** 1.024** 1.031***
(6.26) (4.36) (3.89) (4.33) (2.54) (2.58)

Foreign Stock - 1.145*** 1.150*** 1.149*** 1.181*** 1.028
- (11.51) (11.19) (11.95) (11.38) (0.89)

Price 1.007** 1.008*** 1.008*** 1.009*** 1.015*** 1.004
(2.52) (3.32) (3.14) (3.52) (2.88) (1.42)

R&D - - 1.016** - - -
- - (2.55) - - -

Policy Index - - - 1.318** 1.476* 1.170
- - - (2.45) (1.72) (1.35)

Value Added - - - 1.078** 1.145*** 1.012
- - - (2.43) (2.74) (0.37)

Country/Tech. FE yes yes yes yes yes yes

Time FE yes yes yes yes yes yes

Nr of Observations 3740 3740 3410 3740 2040 1700
Log-Likelihood -3273 -3191 -2987 -3186 -1491 -1640
Chi-Square 345547 316411 293259 306610 132962 178679

Notes: see notes to table 7.

7 Conclusions

This paper has contributed to the induced innovation literature by extending the analysis
of supply and demand determinants of innovation in energy-efficient technologies, account-
ing in particular for the role of international knowledge flows and knowledge spillovers.

We have first identified and studied the channels through which knowledge flows be-
tween countries. Our empirical analysis shows that higher geographical distance is as-
sociated with a lower probability of knowledge flows between two countries. We have
also presented an detailed analysis of the role of distance in technological space: here
the results point to the fact that the more similar are any two given countries, the more
likely is the flow of knowledge between the two. In addition, the flow of knowledge is
more likely to occur between leader innovators than between followers and more likely the
closer the two countries are to each other in terms of innovation frontier. We also confirm
the importance of linguistic similarities and trade block relations between sending and
receiving countries.

Next we built measures of internal and external available knowledge stocks. The em-
pirical analysis of the supply and demand determinants of innovation confirms the role
both of demand-pull effects, as proxied by energy prices, and of technological opportunity,
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as proxied by those knowledge stocks. Our analysis shows in particular that spillovers in
energy-efficient innovation are associated with higher levels of innovation in a given coun-
try at a given time. The results relative to knowledge stocks prove robust to changes in the
specification, different estimation techniques, different proxies for demand determinants
of innovation. The analysis presented so far also points to the role of policy in spurring
additional innovation.

We believe that the paper has shed some new light on the determinants of knowledge
diffusion and of the process of innovation. Here full account has been made of the cru-
cial issue of knowledge spillovers. As a consequence, this paper is of relevance both for
the general literature on technological change as well as for the literature that studies
environmental and energy-efficient inducement.

Of course, the analysis presented here could be fruitfully improved in a few directions.
Firstly, it would be useful to relax the assumption made in the first part of the paper
that the rate of knowledge diffusion between countries is time-invariant. Secondly, the
availability of better proxies for the demand determinants of innovation would further
strengthen the econometric results in the second part of the paper. In particular, on the
one hand, reliable energy price series would allow the extension of the study to non-OECD
countries. On the other hand, more satisfactory measures of effectiveness of energy and
environmental policy would more effectively pin down the role of policy for innovation
activity. Our current research focuses on these aspects.

A Appendix: Technological Indexes

The index of technological distance x5
i,j is adapted from Jaffe (1986) and uses information

on the distribution of the patents of each couple of countries i and j to measure their
distance in technological space. In particular, each country i is associated with a vector
Shi = (shi,1, shi,2, ..., shi,S) containing the patent shares it generated in each technolog-
ical field s (shi,s) for the whole period under consideration. The uncentered correlation
coefficient (angular distance) between these vectors for each pair of countries is calculated
using the following formula:

x5
i,j = 1 − (Sh

′
iShj)

[
∑

s(shi,s)2
∑

s(shj,s)2]
1
2

(12)

The value of the above index is between 0 and 1 and it is equal to 0 for countries which
have the same distribution of patenting across the different technologies considered in the
analysis. This index of technological distance is expected to be negatively correlated with
the probability of observing a citation (and therefore with the probability that knowledge
flows between the two countries). This is due to the fact that the majority of citations
are between the same technological fields. The more similar are the two countries in
technological space, the more they are likely to cite each other.

The second and third indexes of technological distance, x6
i,j and x7

i,j , are adapted
from MacGarvie (1996) and use information on average forward citations received by the
patents of each country in order to proxy for the average value of its innovation. The
index x6

i,j is a measure of distance in technological development of the citing country j
with respect to the cited country i. The index is calculated as the ratio of the average
number of citations received by patents in citing country j (fj,s) to the average number
of citations received by patents in cited country i within the same technological field s,
averaged over the number of fields in which the citing country patents (Si), minus one.
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x6
i,j =

∑
s(fj,s/fi,s)

Sj
− 1 (13)

This index equals zero when the patents granted in the citing country are on average
as cited, and therefore as important for future innovation, as those developed by the cited
country. Similarly, this index is lower than zero when the patents granted to the citing
country are of lower importance (less cited) than those granted to the cited country and
it is greater than zero when the patents granted to the to the citing country are of greater
importance (more cited) than those granted to the cited country. This measure could
be either positively or negatively correlated with the probability of observing a citation.
In the first case, being a technological laggard negatively influences the probability of
observing knowledge flow. In the second case, conversely, a negative correlation would
indicate that technological laggards can learn more from a more developed country.

The index of technological distance x7
i,j provides a measure of whether patents in a

given country i are more or less cited, therefore more or less important, relative to the
average innovation. This index measures how sophisticated the research is in country i
as compared to the average patent in the sample. It is calculated as the average forward
citations received by the country’s patents in technology field s (fi,s) to the average
number of forward citations received by a patent in the technology field (fs), averaged
over the fields in which country i patents (Si).

x7
i,j =

∑
s(fi,s/fs)

Si
(14)

A value of this index greater than one indicates that the country is a technological
leader (above average), while a value less than one suggests that the country is a tech-
nological follower (below average). In the empirical analysis two dummy variables are
constructed, one equal to one if both citing and cited countries are technological leaders
and one equal to one if both citing and cited countries are technological followers.
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Grübler, A. and S. Messner (1996). Technological Uncertainty. In N. Nakicenovic,
W. Nordhaus, R. Richels, and F. Toth (Eds.), Climate Change: Integrating Science,
Economics, and Policy, pp. 295314. Laxenburg, Austria: CP-96-1, International Insti-
tute for Applied Systems Analysis.

Hall, B. H., A. B. Jaffe, and M. Trajtenberg (2001). The NBER Patent Citations Data
File: Lessons, Insights and Methodological Tools. NBER Working Paper 8498.

Hicks, J. R. (1932). The Theory of Wages. London: Macmillan and Co.

IEA (2008a). Energy Prices and Taxes. Documentation for Beyond 2020 Files.

IEA (2008b). Energy Technology Perspectives. Paris: OECD/IEA.

IEA (2008c). Energy Technology R&D Database. Documentation for Beyond 2020 Files.

Jaffe, A., R. Newell, and R. Stavins (2003). Technological Change and the Environment. In
Maler, K.-G. and Vincent, J. (Ed.), Handbook of Environmental Economics, Handbooks
in Economics series, pp. 461–516. North-Holland/Elsevier.

Jaffe, A. and K. Palmer (1997). Environmental Regulation and Innovation: A Panel Data
Study. Review of Economics and Statistics 79 (4), 610–619.

Jaffe, A. B. (1986). Technological Opportunity and Spillovers of R & D: Evidence from
Firms’ Patents, Profits, and Market Value. American Economic Review 76 (5), 984–
1001.

Jaffe, A. B. and M. Trajtenberg (1996). Flows of Knowledge from Universities and Federal
Laboratories: Modeling the Flow of Patent Citations over Time and Across Institutional
and Geographic Boundaries.

Jaffe, A. B., M. Trajtenberg, and M. Fogarty (2000). Knowledge Spillovers and Patent
Citations: Evidence from a Survey of Inventors. American Economic Review 90 (2),
215–218.

Jaffe, A. B., M. Trajtenberg, and R. Henderson (1993). Geographic Localization of
Knowledge: Spillovers as Evidenced by Patent Citations. Quarterly Journal of Eco-
nomics 108 (3), 577–598.

Kamien, M. I. and N. L. Schwartz (1968). Optimal Induced Technical Change. Econo-
metrica 36 (1), 1–17.

26



Keller, W. (2002). Geographic Localization of International Technology Diffusion. Amer-
ican Economic Review 92 (1), 120–142.

Keller, W. (2004). International Technology Diffusion. Journal of Economic Litera-
ture 42 (3), 752–782.

Lanjouw, J. O. and A. Mody (1995). Innovation and the International Diffusion of Envi-
ronmentally Responsive Technology. Research Policy 25 (4), 549–571.
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