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Abstract 
Traditional large appliances absorb a large share of residential electricity 

consumption and represent important targets of energy policy strategies 
aimed at achieving energy security. Despite being characterized by rather 
mature technologies, this group of appliances still offers large potential in 
terms of efficiency gains due to their pervasive diffusion. In this paper we 
analyse the electricity consumption of a set of four traditional ‘white goods’ 
in a panel of ten EU countries observed over 21 years (1990-2010), with the 
aim of disentangling the amount of technical efficiency from the overall 
energy saving. The technical efficiency trend is modelled through a set of 
technology components representing both the invention and adoption 
process by the means of specific patents weighted by production and 
bilateral import flows, which allows to overcome the rigid Stochastic 
Frontier framework in modelling the effect of technical change. Our results 
show that the derived energy demand and inefficiency trends are both 
related to changes in the amount of available technology embodied in 
energy efficient appliances. The effect is significant both in its domestic and 
international components and suggests an active role of innovation and trade 
policies for achieving efficiency targets which directly impact the amount of 
electricity consumed by households. 
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1 Introduction 
The reduction of primary energy consumption through energy efficiency (EE 

henceforth) represents a cornerstone of the transition towards a resource-efficient green 
economy in Europe and a possible strategy to achieve energy independence and security 
(EC, 2011). According to the new EU climate and energy strategy for 2030 agreed by 
EU leaders on the 23rd October 2014,1 in order to achieve a greenhouse gas emissions 
reduction target of 40% by 2030 compared to 1990, it would be required an increased 
level of energy savings of approximately 25% by 2030 compared to 1990. 

In energy economics, EE is commonly interpreted as the relationship between the 
output produced by an economy and the energy consumed to produce it (Patterson, 
1996 and Lovins, 2004, among others). Thus, a general characteristic of EE is the use of 
less energy inputs for a larger or equivalent level of economic activity or service. In 
light of this, the achievement of higher EE performance intrinsically relies on 
technological innovation as a means for improving productivity of the energy input and 
reducing operating costs (Linares and Labandeira, 2010; Florax et al., 2011; Hartman, 
1979). Most of the studies on EE focused on the industrial sector, leaving room for 
investigation on the analysis at residential level. In this respect, official statistics (EC, 
2012a) show that the residential sector accounted in 2010 for roughly 30% of total final 
electricity consumption and such a share does not seem to be slowing down (IEA, 
2012). Besides population growth, this is due to the modern lifestyle, which extensively 
depends on the availability of devices, systems and equipment powered by electricity. 
However, the role of domestic consumption appears relevant mostly for the widespread 
presence of traditional large appliances (freezers, refrigerators, washing machines and 
dishwashers), which are still responsible for 25% of households’ electricity 
consumption as opposed to other appliances such as information and communication 
devices whose energy needs are negligible with respect to the so called ''white goods’’ 
(Saidur et al., 2007)2. Moreover, since home appliances generally consume electricity 
instead of renewable fuels or direct combustion fuels, they carry a relevant carbon 
footprint in countries where electricity production is carbon intensive (Cabeza et al., 
2014). Even though improving EE for relatively old technologies embodied in large 
appliances is likely to become increasingly costly given the decreasing marginal returns 
of energy efficiency technologies, the potential contribution of EE to reduce energy 
consumption is still large if we consider the combined effect of little incremental 
inventions and the large diffusion of traditional electrical appliances. Being these latter 
crucial to fulfil primary needs, they are widespread among households' dwellings (IEA, 
2009) and at the attention of policy makers who are implementing an increasing number 
of important regulatory actions such as the ‘Eco-design Directive’ for Energy-Using 
Products (EuP Directive 2005/32/EC), the introduction of energy labelling for electric 
devices (Directive 92/75/ECC) or more recently, the Energy Efficiency Directive 
approved in 2012, which establishes a set of binding measures to help the EU reach 
ambitious energy efficiency targets (EC, 2012b). 

Recent studies have confirmed the cost-effectiveness of EE gains deriving from 
electrical appliances with respect to those deriving from other sectors (McKinsey, 2009) 
                                                
1 European Commission proposal (EC COM 2014-15). 
2 The portfolio of energy services available for households massively increased in the last 40 years, with a 
strong penetration of new devices and appliances aimed at satisfying these services. See Burwell and 
Swezey (1990). 
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and identified important sources of energy saving in eco-design measures for household 
appliances (EC, 2012a). In particular, cooling appliances (freezers and refrigerators), 
washing machines and dishwashers seemed to be particularly responsive to energy 
efficiency policies and showed large impacts in terms of EE performances also in 
consequences of Corporate Social Responsibility strategies relying on voluntary 
agreements of manufactures3. In this context, the availability of new energy efficiency 
technologies developed by firms and progressively adopted by households represents a 
key driver to divert the increasing trend of residential electricity consumption. 

The literature has highlighted as available EE technologies are adopted at sub-optimal 
level, identifying barriers of different nature (Brown, 2004; Jaffe et al., 2004; 
Gillingham and Palmer, 2014). The phenomenon is known in the literature as the EE 
gap and can be defined as the perceived gap in uptake of existing energy efficient 
technologies despite these latter are characterized by positive net present values (Jaffe 
and Stavins, 1994). This translates into slower paces of EE technology adoption 
(demand side) and, consequently, in weaker market stimuli for firms to innovate (supply 
side). Broadly speaking, once a technology is invented and available on the market, its 
adoption rate, slow in the first phase, rapidly accelerates up to a saturation point in 
which the diffusion of the new technology reaches its maximum and declines in favour 
of new technologies introduced into the market (Griliches, 1957; Geroski 2000). In the 
case of EE technologies, the typical S-shaped curve traced by the level of technology 
turnover has different explanations, such as the adopters' propensity, which in turn 
depends on the awareness level about energy saving potential and the access to 
technical information. The high level of heterogeneity among consumer preferences 
leads to differences in the expected returns to adoption, although these differences tend 
to be reduced over time as the cost of new technologies falls and information becomes 
increasingly available. Furthermore, the heterogeneity in the technology adoption rate 
changes according to the good considered (Jaffe et al., 2004; Fernandez, 2001), since 
the longer the expected lifetime of the appliance, the more the consumer faces long-term 
energy savings concerns, also considering the growing trend in energy prices occurred 
in the last decades (Popp, 2002). 

In this paper, we employ an original dataset to analyse the determinants of households’ 
electricity demand for a set of four traditional large electrical appliances (also called 
“white goods”) in a panel of 10 EU countries observed over a period of 21 years. 
Differing from other studies, we focus on the role of innovation dynamics to explain the 
virtuous mechanism through which a large share of energy consumption has been 
reduced in the sector of residential electrical appliances. By relying on patents (in 
particular those related to appliance-specific energy efficiency), our electricity demand 
function incorporates the contribution of technology invention and diffusion processes 
as a source of efficiency-driven energy saving by controlling also for specific 
consumption drivers, such as per-capita income, dwelling size and type of appliance. In 
the second part of the analysis, we employ a stochastic frontier analysis (SFA) to 
disentangle the amount of energy saving observed in the demand estimation due to 
technical efficiency. In doing this, we use our technology measure for modelling the 
distribution of technical efficiency, which is supposed to affect EE performances via 
technical change, thus leading to net gains in energy saving. 

                                                
3 An example is the Conseil Européen de la construction d’appareils domestiques (CEDEC). 
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The rest of the paper is structured as follows. Section 2 describes the relationship 
between energy consumption, EE and technological innovation. In Section 3 we present 
the dataset and the empirical strategy to estimate the standard electricity demand 
function and the associated stochastic frontier, while results and efficiency scores are 
discussed in Section 4. Section 5 concludes the paper with some policy implications. 

2 Energy efficiency and innovation 

2.1 The empirical evidence 
There is very scarce empirical evidence analysing the relationship between technical 

change and the level of energy consumption in the residential sector. Early empirical 
analysis mainly focus on a product-based approach in which the demand drivers play a 
key role through the well-known price-induced innovation hypothesis. In this respect, 
Newell et al. (1999) test the hypothesis of policy-augmented price-induced innovation 
relying on sale data of room and central air conditioners as well as of gas water heaters 
in the 1958-1993 period. They find positive relation between EE performances and the 
technology turnover. This latter is led by increasing energy prices or lower appliances' 
prices. The regulatory activity, taken into account by analysing government efficiency 
standards, is also effective for stimulating technological improvement, together with the 
introduction of energy labelling requirements. However, more recent contributions seem 
to be more prone in following a context-based approach, in which the energy saving 
performances are considered as a part of a more complex process mainly governed by 
the technology advances, this latter being often induced by a set of drivers such as 
policy-related and behavioural factors (van der Bergh et al., 2007; del Rio Gonzalez, 
2009; Horbach, 2008). On the wake of the numerous studies on eco-innovation, a 
further strand of empirical literature focused on the determinants of EE technologies 
and their diffusion mechanisms. In this respect, Jaffe and Stavins (1995) measure the 
impact of energy prices, adoption subsidies and building codes on the home EE level in 
the United States between 1979 and 1988, finding a stronger effect of government 
subsidies compared to that led by increasing energy prices on the average level of EE in 
buildings. Although energy taxes (captured by relatively high energy prices over the 
period) have a positive impact on technology adoption, the magnitude of the effect is 
relatively small. Moreover, technology standards seem to have no impact on the 
adoption of new EE technologies, suggesting that the building codes are often set too 
low to be effective. More recently, Verdolini and Galeotti (2011) analyse the supply and 
demand determinants on energy-efficient and environmental-friendly technologies also 
including spatial knowledge spillovers in a panel of 38 countries. Besides the positive 
impact of these latter, further stimuli to innovate derived from by the variability of 
energy prices via induced innovation hypothesis as well as from the technological 
opportunity, measured by country-specific knowledge absorptive capacity. The 
determinants of new EE technologies in the building sector is also investigated by 
Noailly (2012), who tests the impact of alternative environmental policy instruments 
(regulatory energy standards in building codes, energy prices and specific governmental 
energy R&D expenditures) on EE patent applications in eight technological building 
sectors as a proxy for firms' innovative effort. The analysis, which employs a panel of 
seven European countries observed over the period 1989-2004, concludes that 
regulatory standards have a greater impact than energy prices and R&D support on 
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innovation. The author argues that the insignificance of prices can be due to the 
specificity of the building sector, which is typically affected by the principal-agent 
problem (Gillingham et al., 2009). A similar approach is followed in Costantini et al. 
(2014), using a panel of 23 high-income OECD countries over 21 years. By 
disaggregating the analysis in three sectors, namely lighting, buildings and large 
electrical appliances, the paper analyses the relationship between different innovation 
drivers, with a particular emphasis on the policy intervention. They measure firms' 
innovative activity, measured by EE patents filed at the European Patent Office (EPO), 
when simultaneously subject to heterogeneous set of policy measures. The analysis 
confirms the important role of energy prices for stimulating EE technologies, but 
enlarges the framework to other important drivers that are effective in spurring EE 
innovative activity such as long-run energy strategies (abundance of electricity 
generation from domestic sources), policy spillovers and the characteristics of the 
policy instruments mix. 

Nevertheless, to the best of our knowledge, there are no studies that directly relate the 
EE performances at household level to the impact of new technologies, which are more 
and more incorporated in the white goods. In light of this, the present paper takes 
advantages of the contribution of eco-innovation literature for identifying relevant EE 
technologies, in order to derive a measure of technical efficiency which is assumed to 
be directly governed by the innovation process. 

2.2 Measuring energy efficiency 

The measurement of EE at aggregate level, even focusing on a specific sector as we 
do in the present work, is not an easy task. The reasons of such a difficulty can be 
manifold. First, energy saving and EE are not completely overlapping terms, as EE is a 
sub-set of the energy saving (or energy conservation) domain. This latter is a broader 
concept since energy saving can be achieved through EE gains or simply by reducing 
the level of economic activity, which may also reveal a change in consumers’ 
behaviour. Patterson (1996) led the way to conceptualise EE in economic terms, 
proposing a set of indicators of different nature and laying out some methodological 
issues when different indicators are applied to real data. For instance, the commonly 
used energy-GDP ratio or energy productivity index4, without specific calculations at 
margins, may suffer from bias when structural effects are not separated from technical 
efficiency. Indeed, when different countries or sectors are compared using the 
aggregated energy-GDP ratio, the specific composition of the economy is not taken into 
account and the results may lead to misleading conclusions. For instance, a country can 
efficiently produce energy-intensive goods and show a high energy/output ratio, while 
at the margin, this bias disappears. Bosseboeuf et al. (1997) highlight other 
measurement difficulties such as the heterogeneity in data definition and the divergence 
of indexes interpretations, since the concept of energy efficiency is subject to 
heterogeneous definitions across countries. In this respect, many national energy 
agencies attempted in past to address the issue of harmonisation in EE data and related 
definitions (EPA, 1995; ENEA, 1996). In addition, climatic differences between 
countries, particularly important when comparing energy efficiency in space heating, 
play a role when the analysis extends over large latitudes. The lack of consensus for 
                                                
4 Energy productivity is the reciprocal of energy-GDP ratio. See Sue Wing and Eckaus (2007) and 
Markandya et al. (2006), among others. 
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measuring EE is also recently pointed out by Khademvatani and Gordon (2013), who 
departing from a marginal EE index, introduced a theoretical framework which 
incorporates the social value of externalities. These latter may bias the measure of 
efficiency, since ''firms can be privately efficient in energy use but not socially'' (pp. 
154). Accordingly, the difference between the shadow value and the price of energy is 
identified as a measure of energy inefficiency and provides a profit incentive for the 
economic agent to alter the energy use.  

A further relevant difficulty for measuring EE at sector level is due to the fact that 
EE performances are strongly related to the technology employed in the ‘production 
process’. In our case we refer to the technological content embodied in each single 
appliance, which through the diffusion process, translates its marginal contribution in a 
large impact on the energy saving at aggregate level. This process takes place since each 
appliance’s contribution is multiplied by the number of appliances sold on the market 
and operating in the households’ dwellings. Unfortunately, such an effect is difficult to 
be captured given the lack of data on the stocks of devices as well as their different 
technological characteristics. 

Regarding the analytical approaches developed to measure the level of technical 
efficiency, one of the most effective is represented by the Stochastic Frontier Analysis 
(SFA), a parametric empirical technique which allows to estimate both the level of 
theoretical and actual efficiency of a given production system in the well-known 
framework of the neoclassical production function (Aigner et al., 1977; Meeusen and 
van den Broeck, 1977)5. Although such a technique is not exempt from drawbacks, such 
as the imposition of a predetermined functional form, its use has been extensively 
exploited in the literature of energy economics (see Buck and Young, 2007; Boyd, 
2008; Stern, 2012; Filippini and Hunt, 2012, among others).  

In the specific case of residential sector, the empirical evidence remains spare, since 
only a limited number of studies have focused on this issue and, with few exceptions, no 
one focuses the analysis at residential level. The study by Buck and Young (2007) uses 
cross-sectional data on energy use to derive efficiency scores for different types of 
commercial buildings. They find that Canadian buildings are fairly efficient, with 
significant differences between government-owned buildings and those owned by non-
profit organisations, this latter being more efficient. However, the authors recognise 
that, given the data limitations, the effect of new technologies adoption is not fully 
captured by their model. The level of residential energy efficiency is also investigated 
by Filippini and Hunt (2012), who use a balanced panel deriving from the US-EIA 
database to analyse the energy consumption in 48 US States over the 1995-2007 period. 
They find inconsistency in several States between the standard energy intensity 
indicators and energy efficiency scores deriving from the stochastic frontier approach 
used in the analysis, suggesting further investigation on this direction. More recently, 
Filippini et al. (2014) focus on the impact of government policies aimed at improving 
energy efficiency in the residential sector. Although the large number of in-force policy 
instruments existing in the EU, they find room for efficiency gains and a high level of 
variability across countries, although not significant differences between new and old 
EU Member States are detected.  

Even though these studies specifically focus on the measurement of EE at the 
residential level, they do not address the potential of innovation as a means for 
                                                
5 Other possible approaches can be the Data Envelopment Analysis (DEA) (Thore et al., 1994) and the 
decomposition methods (Ang, 1995). 
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achieving EE gains. The technology is usually modelled EE as a latent variable and 
does not allow for explicit considerations regarding the dynamics of innovation process 
(Filippini et al., 2014, among others). Moreover, when investigating the relationships 
between energy consumption and efficiency gains, a further relevant issue is represented 
by the so-called ‘rebound effect’ (Khazzoom, 1980; Greening et al., 2000; Sorrell and 
Dimitropoulos, 2008). This refers to a situation where the energy saving obtained 
through EE lowers the price of the associated energy service and increases its demand 
(direct rebound) or the demand for other goods (indirect rebound). Such an issue seems 
to be absent in the literature of residential efficiency analysis, although several studies 
signal significant and relevant impacts of the rebound effect in reducing the energy 
saving deriving from efficiency gains6. Although deserving some precautionary 
attention, in our analysis the impact of rebound effect is expected to be strongly 
mitigated, since the use of traditional electrical appliances is strictly devoted to fulfil 
primary needs, thus being characterised by low values of demand-price elasticity which 
imply limited levels of rebound effect (see Herring et al., 2007; Ek and Soderholm, 
2010; van den Bergh, 2011; Chakravarty et al., 2013). However, the disaggregation that 
we propose between continuous and intermittent appliances represents a further strategy 
to address potential presence of rebound, relying on the hypothesis that those appliances 
that need to be continuously in operation have minimum substitutability response and 
low saturation effect to possible changes in consumer behaviour due to efficiency gains 
(Lorentz and Woersdorfer, 2009; Ouyang et al., 2010; Guertin et al., 2003). 

3 Empirical strategy 
Our empirical analysis begins by estimating a standard energy (derived) demand 

function. In order to provide a preliminary test on the significance of technological 
advances in domestic appliances, the estimation of electricity demand already includes 
the impact of innovation process. In the second part of the study, we disentangle the 
effect of technical efficiency from the overall gain in energy saving resulting from the 
energy demand estimates. In order to separate technical energy efficiency from general 
energy saving, we employ a technology-augmented stochastic-frontier model, which 
accounts for both the role of domestic and foreign EE innovation in the national 
markets. 

3.1 Technology modelling 

As previously discussed, the level of technology can strongly affect EE performances 
and deserves specific attention. In light of this, we focus on the dynamics through which 
the technology evolves, providing an original methodology to include the innovation 
dynamics in the rigid constraints of stochastic frontier analysis. Following the 
conceptual contributions of innovation scholars (see Stoneman, 1993; 2001 among 
others), three main stages in the innovation process can be identified, namely invention 
(i.e the generation of new ideas), innovation (i.e. the development of new ideas into 
marketable products and processes) and diffusion (or adoption stage, in which the new 
products and processes spread across the potential market). Hence, in order to 

                                                
6
 For some empirical evidence on the rebound effect in the residential sector see Greening et al. (2000), 

Saunders, 2013; Hilty et al., 2006 and Davis, 2008. 
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understand how the economy changes as new technologies are introduced and 
employed, the stage of diffusion assumes a crucial aspect.  

In our case, a new EE technology has to be firstly developed and embodied in the 
appliance. Then, this latter has to be diffused and made easily accessible to consumers 
(both in terms of logistics as well as of economic affordability) and, finally, adopted 
(Karshenas and Stoneman, 1993). In this respect, data and metrics for measuring both 
firms’ innovative performances as well as the level of technology diffusion is 
particularly important. Data on specific product characteristics would represent good 
sources for analysing the technological level of appliances, but they are difficult to be 
collected for long time series. On the other hand, technology-input measures, such as 
firms’ R&D expenditures are often not publicly available. Some studies aim at 
investigating the implications of consumers’ behaviour in response to EE gains deriving 
from the use of more efficient appliances by employing energy labels and codes as a 
measure of efficiency performance (Datta and Gulati, 2015, among others). 
Notwithstanding, such an approach provides a poor representation of the technology 
portfolio embodied in the appliances under scrutiny, with a raw distinction among the 
different technology advances implemented by the multitude of manufacturers of 
appliances. In this respect, the approach that we propose allows to model the technology 
as a continuous variable without discrete shifts which approximate the technology 
evolution (i.e., EE classes) and thus producing a more realistic representation of the rate 
and direction of technical change. 

To this aim patents, despite some limitations, constitute a widespread data source in 
the economics of innovation (Hall et al., 2005; Jaffe and Trajtemberg, 2004; Malerba 
and Orsenigo, 1996; Oltra et al., 2010; Lanjouw et al., 1998; Lanjouw and 
Schankerman 2004; van Pottelsberghe et al., 2001), since they provide a wealth of 
information on the nature of the invention and the applicant for rather long time series. 
Patent data frequently represent the direct result of R&D processes, a further step 
toward the final output of innovation, that is useful knowledge through which firms are 
able to generate new profit sources. Nevertheless, in the case of green technologies, 
standard international patent classifications only partially represent the whole range of 
sub-fields characterizing complex technological domains such as EE (Barbieri and 
Palma, 2015) or biofuels (Costantini et al., 2015b). In light of this, the patent database 
here adopted allows to integrating the Y02 Cooperative Patent Classification (CPC) 
based on patent classes for green technologies, which recently incorporates energy 
efficiency technologies for the residential sector, with the specific work carried by 
Costantini et al. (2015a) on specific sub-sector of electrical appliances. Table B1 in the 
appendix describes the CPC classes that were relevant for our study. As a result, we 
collect a total of 9619 unique patent applications filed at the European Patent Office 
(EPO) and belonging to the four appliances, namely freezers and refrigerators, washing 
machines and dishwashers. Our patent sample has been ordered by application date and 
assigned to the applicant’s country. 

A possible limitation when patents are employed as a measure of innovation output is 
represented by the high heterogeneity in their value (Griliches, 1998 among others). It is 
thus necessary to control for patent quality. In this respect, it is worth noting that EPO 
applications are more expensive than applications to national patent offices and 
inventors typically apply to EPO if they have strong expectations in terms of economic 
exploitation of the invention. The difference in costs deriving from the decision to 
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filling to EPO instead of national patent offices provides a “quality hurdle which 
eliminates applications for low-value inventions” (Johnstone et al., 2010, p. 139). 

In order to capture both past and recent innovative efforts, the domestic patent stock Π 
has been calculated following Popp (2003): 

 

Π!,!= π!!!𝑒!!! ! (1− 𝑒!!! !!! )
∞

!!!

 (1) 

 
where π indicates the patent count, 𝛽! the rate of decay (set to 0.1) that captures the 
obsolescence of older patents, 𝛽! the rate of diffusion (set to 0.25) that accounts for the 
delay in the diffusion of knowledge, 𝑖 indexes countries and 𝑡, 𝑠 index time. This 
modelling choice allows for treating the technology stock as a cumulative process, but 
at the same time it accounts for the obsolescence effect, as new technologies are 
available, older patents become less profitable (Evenson, 2002; Hall, 2007). 

Given that patents represent only the first stage of innovation process (i.e., invention), 
we derive a proxy of technological diffusion by considering both the domestic and 
foreign penetration of EE electrical appliances sold in the market. Our measure consists 
in a domestic innovation component and a foreign innovation component (𝓏!,!!"#$%&'( 
and 𝓏!,!

!"#$%&', respectively). Technology embodied in electrical appliances enters the 
national markets through domestic production and foreign import flows, these latter 
expanding the internal supply of energy efficient appliances. Hence, in this stage new 
EE appliances are sold by firms to households and contribute to mitigate the energy 
consumption. In order to capture the impact of technology embodied in the appliances 
and actually sold in the market, each national patent stock is multiplied by the national 
production of appliances. Nevertheless, a relevant share of physical efficiency also 
depends by appliances purchased and used by households in the national territory and 
imported by foreign producers. As suggested by Shih and Chang (2009) and more 
recently by Costantini and Liberati (2014), well-established international market 
relationships represent a good means for testing the degree of embodied technology 
diffusion. Accordingly, patent stocks belonging to foreign firms are multiplied by the 
corresponding appliance-specific bilateral import flow. Both the domestic and foreign 
technology stocks have been divided over the total amount of appliances circulating in a 
given country, calculated as the domestic production less the export share to which we 
summed the imported production from foreign countries.  

In formula, the two technology stocks are calculated as follows: 
 

 
𝓏!,!!"#$%&'( =

Π! 𝑌! − 𝐸𝑥𝑝!
𝑌! − 𝐸𝑥𝑝! + 𝐼𝑚𝑝!!

!

!!!

 

𝓏!,!
!"#$%&' =

Π!𝐼𝑚𝑝!,!!!!

𝑌! − 𝐸𝑥𝑝! + 𝐼𝑚𝑝!!

!

!!!

 

(2a) 

 

(2b) 
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in which 𝐸𝑥𝑝 represents the total export, 𝑌 the domestic production, 𝐼𝑚𝑝!,! the import 
quantity entering from country 𝑖 to country 𝑗, Π the patent stock, 𝑘 indexes the type of 
appliance (1=refrigerators and freezers, 2= washing machines, 3= dishwashers) and 
𝑡  indexes time. Data on domestic production and bilateral trade flows, considered at 
eight digit level of detail and expressed in monetary values (Euro), derive, respectively, 
from PRODCOM and COMEXT database, both available from Eurostat (2013a, b). 7 
 

[Figure 1 about here] 
 

Figure 1 plots the dynamics of the two technology components (domestic and foreign) 
for each country and year, showing some preliminary and interesting insights. First, 
both the domestic and foreign patent stocks are steadily increasing over time, with the 
foreign component always predominant. Two exceptions are represented by Italy and, 
recently, Germany, in which the amount of EE-technical knowledge domestically 
developed is greater than the one imported from abroad. On the contrary, Slovenia is 
characterised only by imported innovation. This figure depicts a heterogeneous pattern 
in which some countries are leaders in both technology development and export, while 
some others are mainly characterised by technology adoption. The split between 
domestic and foreign market interconnections dynamics is crucial when EE is under 
scrutiny, since no a priori expectations in terms of EE trend can be drawn by observing 
only the domestic technology component (the national stock of technical knowledge 
weighted by the net domestic production). In fact, we may expect a relatively large 
improvement in technical efficiency also in technology-adopting countries, since EE 
performances are not affected by the level of national or international technological 
capacity, rather by the availability on the market of new energy efficient appliances, 
wherever the latter derive from. Although not directly investigated in this paper, it is 
worth noting that the role of government regulation, in particular of those policies 
aimed at promoting energy saving, can strongly affect the innovative capacity of a 
country, and consequently, its EE performances. In this respect, Costantini et al. 
(2015a) provide fresh evidence that foreign countries characterized by great innovation 
capacity have larger incentive to export new EE appliances in those countries with 
higher policy stringency and a well-balanced mix of policy instruments. Such a policy-
induced effect translates in larger markets for EE appliances and contributes to mitigate 
the level of energy consumption. Moreover, the invention capacity of a country is also a 
                                                

7
 We selected the following CN8 (Combined Nomenclature 8-digit) codes for measuring bilateral trade 

flows in the COMEXT database: 8418 "Refrigerators, freezers and other refrigerating or freezing 
equipment, electric or other; heat pumps; parts thereof (excl. air conditioning machines of heading 
8415)", 8422 "Dishwashing machines; machinery for cleaning or drying bottles or other containers; 
machinery for filling, closing, sealing or labelling bottles, cans, boxes, bags or other containers; 
machinery for capsuling bottles, jars, tubes and similar containers; other packing or wrapping machinery, 
incl. heat-shrink wrapping machinery; machinery for aerating beverages; parts thereof" and 8450 
"Household or laundry-type washing machines, incl. machines which both wash and dry; parts thereof". 
We selected the following NACE (rev. 1.1) codes for measuring domestic production and total import and 
export of appliances: 29711110 "Combined refrigerators-freezers; with separate external doors", 
29711133 "Household type refrigerators", 29711135 "Built-in refrigerators", 29711150 "Freezers of the 
chest type; capacity =< 800 litres", 29711170 "Freezers of the upright type; capacity =< 900 litres", 
29711200 "Dishwashers", 29711330 "Fully-automatic washing machines; capacity =< 10 kg", 29711350 
"Non-automatic washing machines; capacity =< 10 kg". 
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function of other indirect effects, such as knowledge spillovers able to enhance the 
capacity of knowledge absorption (Verdolini and Galeotti, 2011). 

3.2 Energy demand model 

Our analysis considers a balanced panel of ten EU countries8 observed over the 1990-
2010 period. In the energy demand specification, households are assumed not to 
demand electricity per se, but for the need of energy services, such as washing or 
cooling, which are satisfied by using different electrical appliances (Linares and 
Labandeira, 2010). Income, electricity prices and technology constitute the inputs of the 
(derived) electricity demand that we estimate for two groups of home electrical 
appliances, namely cooling appliances (refrigerators and freezers) and washing 
appliances (dishwashers and washing machines). Data on appliance-specific electricity 
consumption derive from the Odyssee database, which has been developed by Enerdata 
in collaboration with several national energy agencies, under the supervision of the 
European Commission. 

In addition, we employ a set of additional controls. The first is the average size of 
households' dwellings (from Odyssee-Enerdata), since larger houses have been 
recognized in the literature as the most important socio-economic determinant of 
residential energy consumption and it is more likely to imply a higher number of 
appliances per dwelling; this allows us to control possible size-effects in the energy 
demand (Kaza, 2010; Kelly, 2011; ETCSCP, 2013). In addition, we consider the 
hypothesis that the electricity households’ demand can vary with the characteristics of 
the urban context. To this aim, we include the share of urban population over the total 
population (World Bank, 2015). 

Since the electrical appliances considered in the analysis are not responsive to changes 
in climate conditions, we do not control for average temperature or heating degree-days 
as in similar studies aimed at estimating energy demand (Stern, 2012; Filippini et al, 
2012; 2014). Even though the set of considered countries belong to a homogeneous and 
limited geographical area (i.e. EU Member States), we employ a fixed-effects model to 
account for unobserved heterogeneity due to implicit differences across national 
innovation systems, market and institutional settings and cultures. 

By defining 𝐸!,! the annual level of total electricity consumption expressed in kWh and 
demanded by households for using the two groups of appliances, the panel fixed-effect 
demand equation is defined as follows: 

 

 ln  (𝐸!,!) = 𝛼! + 𝛽! ln 𝑃! !,!+  𝛽! ln
𝐺𝐷𝑃
𝑃𝑂𝑃 !,!

+  𝛽! ln 𝐷𝑤𝑒!"#$ !,! + 

+  𝛽! ln
𝑈𝑟𝑏!"!
𝑃𝑂𝑃 !,!

+ 𝛿! + 𝜀!,! 

(3) 

 

                                                
8 Austria, Denmark, France, Germany, Greece, Italy, Netherlands, Slovenia, Sweden and the United 

Kingdom. 
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where 𝑃! and !"#
!"!

  represent, respectively, end-use electricity prices per KWh 
(International Energy Agency and Eurostat) and gross per-capita income (World Bank), 
both expressed in purchase-power parity (PPP) 2005 US dollars, 𝐷𝑤𝑒!"#$ denotes the 
average household size in squared meters, !"!!"!

!"!
 is the urban population as a share of 

total population, 𝛿! indicates the set of time dummies with 𝑡 = 1990,… ,2010, 𝛼! is the 
country fixed effect and 𝜀!,! is the idiosyncratic error term. We calculated the natural 
logarithms of both dependent and independent variables, hence the estimation results 
represent demand elasticity changes with respect the input employed. Descriptive 
statistics for these variables are reported in Table A1 of the Appendix. 

Given that our dataset allows to differentiating energy consumption by type of 
appliance, we provide also disaggregated results by separating intermittent (washing 
machines and dishwashers) and continuous (refrigerators and freezers) appliances. By 
doing so, we expect not only finer elasticity estimations in the demand function, but 
also an additional control in the stochastic frontier model which mitigates the bias 
deriving from those intermittent appliances more prone to be affected by rebound 
effects, thus producing more accurate efficiency scores. The results of demand elasticity 
estimations are showed in Table 1 and Table 2. 

3.3 Separating technical efficiency 
In order to derive a measure of EE performance, we assume the technical efficiency as 

a function of technology. Hence, the technology level drives the process of energy 
saving through the increasing development and market penetration of EE technologies. 
To this aim, we employ SFA technique, which here requires a well-defined input 
minimisation setting through the use of a cost function. In energy economics, several 
studies have successfully adjusted the production efficiency analysis using SFA to the 
framework of household’s energy demand. Accordingly, households purchase and 
combine inputs to benefit from the utility represented by a composite of energy 
commodities (Filippini, 1995; Filippini and Pachauri, 2004; Filippini and Hunt, 2012). 
More in detail, “the production of energy services can be represented with a production 
function and a set of input demand functions” (Filippini et al., 2014, p. 75). By this 
definition, the ‘production frontier’ provides the minimum energy input used by a 
household, for given level of output (i.e. energy services). Departing from this 
conceptual framework, the stochastic input-demand frontier cost function in a panel 
setting is given by: 

 

𝐸!,!∗ = 𝑥 ′!,!𝛽 + 𝜖!,! 

𝜖!,! = 𝜈!,! + 𝑢!,! 

𝜈!,!~𝑖𝑖𝑑  𝒩 0,𝜎! ;   𝑢!,!~  𝐼𝐼𝐷  ℱ!(𝜔!) 

(4) 

(5) 

(6) 

 
where 𝐸!,!∗  represents the theoretical demand frontier, 𝑥!,! the vector of inputs and 
controls and 𝛽 the vector of unknown parameters to be estimated. The error term is 
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composed by an inefficiency component, 𝑢!,!, that follows a generic distribution ℱ! with 
support defined over ℝ! (e.g., truncated normal or exponential) and scale parameter 𝜔, 
and an idiosyncratic component, 𝜈!,!, that is normally distributed and represents 
measurement errors in consumption reporting and other random factors. Both the error 
components are assumed to be independent from 𝑥. Furthermore, by denoting 𝓏!,! a 
vector of exogenous variables (including a constant term) affecting the level of 
inefficiency and 𝜓 a vector of unknown parameters to be estimated, it is possible to 
explicitly model the statistical distribution of the inefficiency term as follows: 
 

𝑢!,! = 𝓏!,!′ 𝜓 (7) 

 
According to the stochastic frontier framework, the actual demand level 𝐸!,! equals the 

theoretical frontier 𝐸!,!∗ , plus the one-sided error 𝑢!,!, whose distribution depends on the 
vector of auxiliary variables 𝓏!,!. In order to model a technology-driven technical 
efficiency, we include the two technology components as exogenous auxiliary variables. 
Besides the advantage of directly accounting for the effect of technology market 
penetration, this choice allows to exploit a greater heterogeneity, over time and across 
countries, of the efficiency process which also facilitates the model convergence. 

3.4 Estimation 

There is no unanimous consensus among the empirical scholars upon the best 
efficiency estimator in a panel stochastic frontier setting. Although Cornwell and 
Schmidt (1996) point out that repeated observations over time should allow for some 
advantage such as more precise estimations of technical (in)efficiency, when dealing 
with panel data several issues have to be carefully considered. 

The empirical literature on stochastic frontier analysis has evolved in a variety of 
contributions9 mainly distinguishable in fixed and random effects model (FE and RE 
henceforth). FE specification models allow for capturing unobserved heterogeneity 
among units of analysis but in the specific case of SFA they are subject to some 
limitations. By intrinsic modelling construction, the standard FE model treats the unit-
specific inefficiency levels as fixed, implying that the inefficiency term captures all the 
heterogeneity with no possibility to distinguish between persistent actual inefficiency 
and time-invariant heterogeneity and with overestimation of the inefficiency 
component. Moreover, no distributional assumptions are made upon the inefficiency 
term (which remains constant over time) as well as on the correlation between 
inefficiency term, independent variables and idiosyncratic error term. Although some 
modelling alternatives have been proposed to overcome these limitations, as the 
Cornwell, Schmidt and Sickles' time-varying random-quadratic trend model or the 
parametric extension by Lee and Schmidt (1993), simple FE formulations preclude the 
possibility to disentangle between actual inefficiency and unit-specific heterogeneity.  

On the other hand, the random effect model as originally proposed by Pitt and Lee 
(1981) assumes unit-specific inefficiency, although remaining time-invariant in its basic 
formulation. In our case, this means that only the variation across countries would be 
                                                
9 For a review of SFA models see Murillo-Zamorano (2004). 
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explained. Further extensions introduce different distributional assumptions, 
heteroscedasticity in the inefficiency term (Kumbhakar and Lovell, 2000) and time-
varying specification in order to overcome the rigid assumption of time-invariant 
inefficiency, in particular in panel data with long 𝑇 (Battese and Coelli, 1992; 1995; 
Kumbhakar, 1990). 

An interesting class of models allows for explicitly separating the unobserved 
heterogeneity affecting the distribution of inefficiency term through variables able to 
explain the inefficiency level but not directly entering the production process. 
Accordingly, the distribution of inefficiency term 𝑢 can be modelled as a function of a 
vector of auxiliary variables 𝓏. It is thus possible to model the mean (Kumbhakar et al., 
1991; Battese and Coelli, 1995; Huang and Liu, 1994), the variance (Caudill and Ford, 
1993; Caudill et al., 1995; Hadri, 1999) or both parameters of the distribution (Wang, 
2002; Wang and Schmidt, 2002). For all of these combinations, it is important to point 
out that the assumption of non-correlation between the set of predictors and the 
auxiliary variables must hold. In this respect, Stern (2012) argues that if "a sufficient 
number of auxiliary variables that co-vary with the unobserved state of technology can 
be included in the model, the correlation between the remaining residual term and the 
regressors will be eliminated". In addition, the assumption of strict exogeneity when the 
𝓏 vector is included should facilitate the model convergence. 

A possible approach to estimate the inefficiency determinants by using auxiliary 
exogenous variables is the two-step procedure. This envisages the estimation of the 
standard production or cost function in the first step, while in the second step the 
efficiency scores are regressed over a set of auxiliary variables. Although relatively easy 
to be implemented, this approach can produce biased results both in the case of 
heteroscedasticity, i.e. when the vector of inputs 𝑥 and the vector of auxiliary variables 
𝓏 are correlated, as well as when 𝓏 is correlated with the idiosyncratic term 𝜐 (Wang 
and Schmidt, 2002).  

Interesting solutions have been introduced for addressing the issue of unobserved 
heterogeneity in the True Fixed Effect and True Random Effect model (TFE and TRE) 
(Greene, 2005a,b), allowing to disentangle the time varying efficiency level from time 
invariant unobserved heterogeneity. Moreover, a valuable feature of the TFE and TRE 
model is that they are consistently and efficiently estimated by the means of maximum 
likelihood estimation (MLE) method, thus correcting the shortcomings deriving from 
the two-step procedure10. 

Nevertheless, the TFE model is not exempt from some limitations. In particular, some 
inconsistency may arise in small panel samples, especially when 𝑇 is short (Greene, 
2005a). More in detail, the unit-specific intercepts can be inconsistently estimated in 
panel data characterised by large N and short observation periods, given the existence of 
the incidental parameter problem (Neyman and Scott, 1948; Lancaster, 2002). In this 
respect, Belotti and Ilardi (2012) recently demonstrated that the inconsistency bias is 

                                                
10

 In this respect, Farsi et al. (2005) argued that the TFE estimator can be also estimated by using the 
Least Square Dummy Variable estimator specifically adjusted with Mundlak's (1978) means, showing 
that both methods reduce the estimation bias by separating the time-invariant unobserved heterogeneity, 
captured by the Mundlak's group means, from technical inefficiency. Nevertheless, the authors found 
inconsistent results due to the different estimation methods, since the TFE model relies on the 
convergence of simulated maximum likelihood. 
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negligible in samples with 𝑇 longer than 10 years, thus allowing the validation of our 
empirical strategy, which relies on the TFE model11. 

With respect to the possible modelling choice of the inefficiency term as a time variant 
or invariant process, considering that our dataset includes a rather long period of 
observations (𝑇 = 21), a time-varying specification seems to be the most plausible 
choice. Statistical support to this hypothesis is also signalled by the significance of time 
dummies in the electricity demand estimation and further confirmed by the preliminary 
specification of the stochastic frontier energy demand function à la Battese and Coelli 
(1992) (see  

Table 3). 
The issue of unobserved heterogeneity assumes relevant importance in cross-country 

comparisons, given that the variance distribution of the inefficiency term is directly 
governed by the technology dynamics. Accordingly, we can exploit the advantages of 
fixed effects estimator fruitfully employed in the empirical innovation literature for 
addressing different country-specific capabilities to innovate or other factors not 
explicitly included as explanatory variables, while minimising the above-mentioned 
shortcomings arising when the FE specification is used in the stochastic-frontier setting. 
At the same time, the specific effect of innovation process, here represented by the 
technology components calculated for the two groups of domestic appliances, is 
explicitly taken into account by introducing heteroschedasticity in the technical 
ine�ciency component. In doing so, the variance of inefficiency term is expressed as a 
function of the covariates defined in the vector of auxiliary variables 𝓏, which map the 
dynamics of innovation process both in its national and international dimension. 

4 Results and discussion 

4.1 Energy-demand estimations 

Table 1 reports our baseline estimates of the (derived) demand for electricity based on 
a standard linear fixed effect model (eq. 3). At this stage we cannot claim causal 
relationship between our set of drivers and the demand for electricity as simultaneity 
between demand and prices and omitted variable bias are likely to give rise to 
endogeneity. Nevertheless, they represent useful descriptive tools to identify 
relationships between our variables of interest. We first estimate the demand function 
for total demand of electricity (columns 1 and 2) which is then split into the demand for 
electricity to operate washing appliances (washing machines and dishwashers, columns 
3 and 4) and to operate cooling appliances (fridges and freezers, columns 5 and 6). For 
all categories, we proceed in two steps. First, we do not consider technology trends 
explicitly (columns 1, 3 and 5) but leave technical change to be explained by time-
specific and country-invariant unobserved components captured by time dummies. 
Second, we introduce our measure of technology as defined in section 3.1 as an 
additional covariate.  

 
[Table 1 and Table 2 about here] 

 

                                                
11 The stochastic frontier function has been estimated with Stata software v. 13.1 using the recent sfpanel 
command by Belotti et al. (2013). 
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In all cases, the price elasticity of the demand for electricity is negative and 
significantly different from zero. The range of variation of point coefficients (between 
0.144 and 0.225 depending on the appliance and specification) is consistent with the 
existing literature (Alberini and Filippini, 2011 among others). The elasticity of energy 
consumption to energy prices is slightly higher for cooling appliances than for washing 
appliances although such a difference is not statistically significant. The price elasticity 
of the demand for electricity tends to be smaller once we include the stock of 
technology as the two variables are positively correlated12. The positive correlation is 
potentially due to the fact that higher energy prices induce consumers to increase the 
demand for energy saving appliances and induce manufacturers to innovate in order to 
offer appliances embodying more EE technologies. GDP per capita is generally 
negatively correlated with electricity consumption but the relationship is always 
insignificantly different from zero. Average dwelling size is an important driver of 
energy consumption, with an elasticity around one when considering all appliances, 
greater for washing appliances than for cooling appliances and significantly different 
from zero in all specifications. This strong result is in line with the discussion presented 
in section 3.2. It should be noted, however, that the average dwelling size is strongly 
correlated with affluence, since richer households may afford larger houses13. To 
understand whether the absence of a significant relationship between energy demand 
and GDP per capita is due to the inclusion of average dwelling size, which already 
captures the affluence of households, we estimate our derived demand equation 
excluding the average dwelling size from the set of predictors (Table 2). Even when we 
exclude average dwelling size, our measure of affluence does not affect the energy 
consumption after controlling for time-invariant unobserved difference in GDP per 
capita (fixed effect), thus signalling a relevant inelasticity of household electricity 
demand for the set of appliances here considered. The share of urban population is not 
significantly related to energy demand, the effect being generally negative (with one 
exception) but always far from significance. This variable, however, turns out to be 
significant for total electricity demand and cooling appliances when we exclude average 
dwelling size from the set of covariates (Table 2). This is compatible with the 
hypothesis that urbanized areas are characterized by smaller dwellings, thus resulting in 
lower electricity consumption. 

In summary, we observe a strong decrease in energy consumption in all countries after 
controlling for our control variables and time-invariant unobserved differences across 
countries (time dummies in column 1, 3 and 5): electricity consumption to operate our 
selection of home appliances given income, electricity prices, average dwelling size and 
share of urban population decreased of about 27 percent over the period 1990-2010, 
with a slightly greater decrease for washing appliances than for cooling appliances. 
Time dummies in columns 1, 3 and 5 are strongly significant. Most importantly, when 
controlling for our variable of technology, time dummies (i.e. trends common to all 
countries) lose significance, while the technology variable (time- and country-specific) 
represents a good predictor of electricity saving. The elasticity is around 0.065, slightly 
greater for washing appliances than for cooling appliances, and strongly significant. 

                                                
12 When regressing the log of the patent stock on the electricity price and a set of year and country 
dummies we obtain an elasticity of the patent stock to energy prices of about 0.32, significant at the 1 per 
cent level. 
13 The correlation between the two measures is 0.72. 
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This result highlights the relevance of technology as a means for reducing electricity 
consumption to satisfy a given demand for energy services. 

In light of the previous results, as a preliminary step for conducting further analysis on 
technical efficiency we test the hypothesis of normally distributed residuals on the 
energy demand estimation and significantly reject the normality assumption14. This 
revealed the existence of inefficiency not only captured by the idiosyncratic error and 
allows us to enrich the analysis by widening the empirical framework to stochastic 
frontier models. 

4.2 Disentangling energy efficiency from energy saving 

In order to derive a reliable specification of the frontier model, we provide a first 
evidence by testing the existence of time-varying inefficiency. To this aim, we employ 
the model by Battese and Coelli (1992), which accounts for the inefficiency term to be 
varying over time. Accordingly, our stochastic frontier model is specified as follows: 

 

ln  (𝐸!,!) = 𝛽! + 𝛽! ln 𝑃! !,!+  𝛽! ln
𝐺𝐷𝑃
𝑃𝑂𝑃 !,!

+ ln 𝐷𝑤𝑒!"#$ !,! + ln
𝑈𝑟𝑏!"!
𝑃𝑂𝑃 !,!

+ 𝑣!,! + 𝜂𝑢!,! 
(8) 

 

where 𝑃!, !"#
!"!

, 𝐷𝑤𝑒!"#$ and !"!!"!
!"!

 represent the demand drivers previously described, 
𝑢!,! is a non-negative random variable which is assumed to account for technical 
inefficiency and follows a truncated normal distribution, while 𝜂!,! = 𝑒!! !!!  is a time-
varying parameter to be estimated together to the vectors of 𝛽 with 𝑡 = 1990,… ,𝑇. 
These preliminary results ( 

Table 3) show coherent and significant elasticity values for the appliance-specific 
electricity demand, the latter being negatively correlated with increases in prices. The 
relatively inelastic value of the price coefficient (20%) signals a low responsiveness of 
households to price changes, in line with the assumption that the use of large traditional 
electrical appliances is aimed at satisfying non-substitutable needs. This evidence is 
further supported by the insignificance of the income variable. A factor strongly 
affecting the appliance consumption is represented by the household size, since larger 
dwellings not only imply more space for appliances, but the term is also presumably 
associated to higher incomes and more sophisticated needs to be satisfied. Most 
importantly, our preliminary estimations show that the efficiency level is affected by 
time variation, the 𝜂 parameter being strongly significant. This suggests the need of 
modelling the inefficiency term as a time-varying variable. 

 
[ 

                                                
14

 We used the Shapiro-Wilk test. Results are available upon request. 
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Table 3 about here] 

 
In this respect, it has been argued that the contribution of technology in the framework 

of stochastic frontier can be indirectly captured by a number of factors, as for instance 
by the price and income effects (see Filippini and Hunt, 2012). More recently, Filippini 
et al. (2014) introduced a specific variable to control the amount of wasted energy due 
to households not using the best available technologies, although admitting the 
limitations of this approach, such as the lack of data on consumers’ behaviour, 
heterogeneity in the level of electricity consumption and the fact that such a method is 
not able to disentangle the energy saving deriving from a more efficient use of inputs or 
from the adoption of energy saving technologies. 

In this respect, we overcome the limitations of the current literature which relies on 
implicit technology modelling, which is generally treated as a latent process. On the 
contrary, we assume that the technology level is strictly connected to the efficiency 
performance. By exploiting the advantages of the recent empirical literature, we model 
the variance distribution of the inefficiency term. As a result, our energy-input demand 
directly incorporates the appliance-specific technology level which governs the 
efficiency dynamics. 

In light of the previous considerations and consistently with our empirical strategy, the 
technology-augmented stochastic frontier model is specified using the TFE model as 
follows: 

 

ln  (𝐸!,!) = 𝛼! + 𝛽! ln 𝑃! !,!+  𝛽! ln
𝐺𝐷𝑃
𝑃𝑂𝑃 !,!

+ ln 𝐷𝑤𝑒!"#$ !,! + ln
𝑈𝑟𝑏!"!
𝑃𝑂𝑃 !,!

+ 𝑣!,! + 𝑢!,! 
(9) 

𝑢!,! = 𝓏!,!𝜓 (10) 

𝓏!,! = ln  (𝓏!,!!"#$%&'( + 𝓏!,!
!"#$%&') (11) 

 
in which the technical inefficiency component 𝑢  is assumed to be heteroscedastic and its 
variance is expressed as a function of 𝓏. 
 

[Table 4 about here] 
 

Table 4 presents the estimation results including the total effect of technology, in which 
𝓏 represents the sum of domestic and foreign technology components. The frontier 
coefficients are in line with those deriving from previous specifications, with the 
exception of per-capita income and urban population, which are both significant and 
negatively correlated to the electricity consumption. In particular, the income effect is 
also explained by the share of urban households, which are found to make a lower use of 
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large traditional appliances, or alternatively, to employ more efficient appliances. This 
result is consistent with the empirical literature that puts in relation the electricity 
consumption with the urban context. For instance, Brounen and Kok (2011) provide 
evidence that more densely populated areas positively affect the rate of energy-labelled 
dwellings in Netherlands, while Kaza (2010) finds negative correlation between 
electricity consumption and urban areas when the latter are compared to rural ones. 
Relevant implications can be attributed to the role of innovation in explaining the energy 
saving performances. The market penetration of the total stock of new EE appliances 
produces significant reduction of households’ energy consumption via technology-driven 
technical efficiency. Results are robust to the choice of the distribution of the inefficiency 
component, either the truncated normal or the exponential distribution. 
 
[ 

Figure 2 about here] 
 

Figure 2 shows the trends of efficiency scores by country for the truncated normal and 
exponential distribution15. Technical efficiency starts from very high values (close to 
unity, meaning full efficiency) in all countries. While in some countries it remains 
rather stable (Austria, France, Greece, Netherlands, Slovenia, Sweden and the UK), we 
observe a remarkable efficiency gain in Denmark and Germany and, to a lesser extent, 
in Italy. 
 

[Table 5 about here] 
 

As previously discussed, the import of new energy efficient appliances may assume 
relevant importance in countries where the innovative effort of domestic firms is 
negligible since it allows these countries to reach increasing levels of energy security 
and to significantly contribute to reducing polluting emissions deriving from fossil fuel 
energy generation. In order to disentangle the role of international market, we separate 
the 𝓏 variable in two components, referring respectively to the domestic and foreign 
market penetration of new EE appliances. Results reported in Table 5 (assuming an 
exponential distribution for the inefficiency component) confirm the significant role of 
international technology diffusion. Even though the coefficient associated to the 
domestic market is larger than the one referring to the import component, the latter 
shows stronger significance, meaning that, in a well-established market relationship, the 
invention and diffusion efforts of foreign innovative firms are significant substitutes to 
those carried out by domestic firms. 
 

[Table 6 about here] 

 
As a further step, we split total electricity consumption into consumption to operate 
cooling appliances and consumption to operate washing appliances (Table 6). By this 
separation, we expect relatively lower influence of the rebound effect in cooling 

                                                
15  When statistically compared, the two distributions are consistent with significant correlation coefficient 
of 0.966 and a Spearman correlation of 0.972. 
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appliances, which are characterized by continuous operation and do not allow 
households to vary the amount of energy consumed. In both cases we observe similar 
results for the input of the stochastic frontier function and a significant effect of the 
technology variable, slightly bigger in magnitude for washing appliances than for 
cooling appliances.  

 
[Figure 3 about here] 

 
Figure 3 shows efficiency scores for the two categories of home appliances as well as 

the efficiency scores estimated for total electricity consumption. We observe that 
technical efficiency of washing appliances is generally lower than the one of cooling 
appliances but it is increasing at faster pace. 

5 Conclusions 
The present study presents an original methodology to account for the role of 

innovation process when investigating the level of efficiency processes by means of 
stochastic frontier analysis, a well-known parametric technique able to disentangle the 
technical efficiency as a measure of distance between the observed and the maximum 
theoretically efficient frontier.  

In order to test the effectiveness of the methodology here proposed, we analyse the 
efficiency trend in two groups of traditional home appliances in the period 1990-2010 
and in ten European countries. The choice of using domestic appliances aimed at 
fulfilling primary needs such as cooling or washing which show low behavioural 
consumer’s responsiveness to changes in energy prices, allows us to minimise the share 
of energy saved due to potential rebound effect and to better identify the impact of 
technology in reducing energy consumption. 

To this aim, in line with the growing empirical literature on eco-innovation, an ad hoc 
patents selection is employed in order to consider specific EE technologies embodied in 
the set of considered appliances, namely freezers and refrigerators, washing machines 
and dishwashers.  

In considering the innovation process as a whole, we model the technology invention 
and diffusion process by combining patent information and data on both import and 
domestic production, these latter approximating the level of market penetration of new 
energy efficient appliances. In order to derive energy efficiency scores, we take 
advantage of the existing literature on the derived households’ energy demand in order 
to fruitfully employ a technology-augmented specification of stochastic frontier 
function. 

Consistently with the existing literature, our results show that the most important 
drivers of electricity consumption for the set of appliances under scrutiny are 
represented by the electricity price and the size of dwelling, while affluence and 
urbanization only enter significantly the demand function for electricity in the stochastic 
frontier specification. 

The significance of the set of time dummies in the basic demand regression model 
signals a latent important effect, which disappears when the technology enters as a 
covariate. This provides a first important evidence of the relevant role assumed by the 
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innovation process in driving the energy reduction pattern and deserves further 
investigation that we address in the second part of the analysis by employing a 
stochastic frontier analysis. In such a setting, the variance distribution of the 
inefficiency term is explicitly modelled through two technology components which 
incorporate, respectively, the effect of domestic and foreign market penetration of new 
energy efficient appliances. Given the fine disaggregation of our data, we are able to test 
the effects of both total and domestic vs. foreign market penetration and in different 
types of appliances. This part of analysis shows that the diffusion of energy efficient 
appliances is a good predictor of efficiency scores and contributes substantially to 
improvements in technical efficiency. We also observe that both the domestic and the 
foreign component are relevant in explaining improvements in technical efficiency. 

Regarding the efficiency performance, our estimations show that the efficiency level 
range from about 85 per cent to almost 100 per cent, depending on the type of appliance 
considered in the analysis. This evidence suggests that households are highly efficient in 
combining ‘energy inputs’ at the minimum cost in order to obtain energy services such 
as cooling and washing. Nevertheless, the values obtained may appear very high with 
respect to other studies employing similar methodologies. On the one hand, this may 
depend on the methodology we use (i.e. a true fixed effect model) that tends to 
underestimate cross-country differences in technical efficiency and is more prone to 
provide higher efficiency levels. On the other hand, a possible reason explaining such a 
difference can be the fact that our analysis focuses on appliances classified as 
‘traditional’. These latter constituted a class of devices that benefited from a persistent 
effect of technology improvements over time, with the effect of significantly saturating 
their efficiency potential in terms of electricity employed. 

Our study suggests relevant policy implications. State-of-the-art technology 
improvements of appliance manufacturers translate into relevant improvements in 
technical efficiency for what concerns the appliances under scrutiny. The efficiency 
gain, which implies significant degrees of energy saving in favour of the households, is 
led both by domestic and foreign blueprints. This observation has implications for both 
innovation policies (i.e. targeted R&D subsidies and enforcement of IPRs) and trade 
policies (i.e. barriers to trade may limit further improvements of energy efficiency). 
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Figure 1 – Trends of technology by country 
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Table 1 – Demand for electricity (baseline estimates) 
  (1) (2) (3) (4) (5) (6)  
Dep: log electr. consumption All appliances All appliances Washing appl Washing appl Cooling appl Cooling appl 

log(electr_price) -0.207*** -0.182*** -0.171** -0.144**  -0.225*** -0.204*** 

 (-5.73) (-8.38) (-2.98) (-2.74)  (-4.89) (-5.61) 
log(GDP pc) -0.0555 -0.0829 -0.0841 -0.114  -0.0629 -0.0858 

 (-0.39) (-0.90) (-0.63) (-1.28)  (-0.37) (-0.63) 
log(av size dwelling) 0.965** 0.917*** 1.202** 1.149*** 0.815** 0.774*** 

 (2.70) (5.08) (2.39) (3.38)  (2.73) (4.61) 
Share urban population -0.230 -0.0689 -0.0746 0.102  -0.272 -0.136 

 (-0.63) (-0.23) (-0.09) (0.13)  (-0.67) (-0.32) 
1991 (D) 0.0113 0.0361* 0.00518 0.0324*  0.0145 0.0353* 

 (0.90) (2.25) (0.49) (2.24)  (0.95) (2.04) 
1992 (D) 0.00109 0.0438* -0.0103 0.0365*  0.00772 0.0436 

 (0.07) (1.96) (-0.87) (1.92)  (0.38) (1.69) 
1993 (D) -0.0198 0.0381 -0.0351** 0.0282  -0.0104 0.0381 

 (-1.18) (1.47) (-3.00) (1.27)  (-0.43) (1.28) 
1994 (D) -0.0337 0.0404 -0.0505*** 0.0306  -0.0238 0.0384 

 (-1.71) (1.35) (-4.05) (1.25)  (-0.83) (1.10) 
1995 (D) -0.0587** 0.0304 -0.0751*** 0.0224  -0.0487 0.0261 

 (-2.54) (0.91) (-4.87) (0.81)  (-1.49) (0.68) 
1996 (D) -0.0697** 0.0334 -0.0906*** 0.0223  -0.0565 0.0299 

 (-2.61) (0.92) (-5.02) (0.75)  (-1.51) (0.70) 
1997 (D) -0.0748** 0.0378 -0.0984*** 0.0249  -0.0599 0.0346 

 (-2.44) (0.95) (-4.33) (0.74)  (-1.42) (0.74) 
1998 (D) -0.0876** 0.0340 -0.113*** 0.0205  -0.0715 0.0304 

 (-2.56) (0.80) (-4.38) (0.59)  (-1.53) (0.60) 
1999 (D) -0.113*** 0.0161 -0.141*** 0.0000907  -0.0945* 0.0136 

 (-3.33) (0.40) (-5.13) (0.00)  (-2.00) (0.28) 
2000 (D) -0.129*** 0.00676 -0.153*** -0.00513  -0.113* 0.000808 

 (-3.44) (0.17) (-4.78) (-0.15)  (-2.19) (0.02) 
2001 (D) -0.144*** -0.00215 -0.168*** -0.0127  -0.128** -0.00946 

 (-3.86) (-0.05) (-5.00) (-0.35)  (-2.45) (-0.19) 
2002 (D) -0.166*** -0.0190 -0.193*** -0.0320  -0.149** -0.0255 

 (-4.53) (-0.46) (-5.66) (-0.81)  (-2.80) (-0.51) 
2003 (D) -0.187*** -0.0357 -0.213*** -0.0476  -0.170** -0.0436 

 (-4.74) (-0.78) (-5.89) (-1.08)  (-2.96) (-0.80) 
2004 (D) -0.203*** -0.0478 -0.230*** -0.0594  -0.186** -0.0559 

 (-4.67) (-0.96) (-5.68) (-1.25)  (-2.93) (-0.94) 
2005 (D) -0.209*** -0.0497 -0.239*** -0.0642  -0.191** -0.0570 

 (-4.28) (-0.91) (-5.04) (-1.16)  (-2.75) (-0.89) 
2006 (D) -0.214*** -0.0501 -0.238*** -0.0585  -0.198** -0.0603 

 (-4.12) (-0.85) (-4.59) (-0.96)  (-2.64) (-0.88) 
2007 (D) -0.214*** -0.0442 -0.237*** -0.0513  -0.198** -0.0556 

 (-3.77) (-0.70) (-4.22) (-0.77)  (-2.40) (-0.76) 
2008 (D) -0.229*** -0.0513 -0.263*** -0.0678  -0.209** -0.0593 

 (-4.18) (-0.80) (-4.97) (-1.09)  (-2.49) (-0.77) 
2009 (D) -0.260*** -0.0763 -0.287*** -0.0862  -0.243** -0.0894 

 (-4.96) (-1.26) (-5.59) (-1.41)  (-3.00) (-1.22) 
2010 (D) -0.270*** -0.0811 -0.297*** -0.0898  -0.254** -0.0953 

 (-5.01) (-1.30) (-5.47) (-1.40)  (-3.06) (-1.26) 
log(technology)  -0.0653***  -0.0715***  -0.0548** 

    (-4.06)   (-5.47)    (-2.28) 
N=200. Fixed effect model. Dependent variable: log of electricity consumption. t statistics based on robust standard errors in 
parenthesis. * p<0.1, ** p<0.05, *** p<0.01 
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Table 2 – Demand for electricity (excluding average dwelling size) 

 (1) (2) (3) 
 All 

appliances 
Washing 

appliances 
Cooling 

appliances 
log(electr_price) -0.220*** -0.166** -0.248*** 

 (-5.11) (-2.22) (-5.31) 
log(GDP pc) -0.0350 0.0628 -0.0636 

 (-0.68) (0.54) (-0.94) 
Share urban population -0.364** -0.0493 -0.507** 

 (-2.21) (-0.06) (-2.32) 
Time dummies Yes Yes Yes 

N 200 200 200 
Fixed effect model. Dependent variable: log of electricity 
consumption. t statistics based on robust standard errors in 
parenthesis. * p<0.1, ** p<0.05, *** p<0.01 

 

Table 3 –Stochastic frontier estimates based on the Battese and Coelli (1992) model 

Dep. variable: 
log electr. consumption 

BC92 

log(electr_price) -0.205*** 
 (-5.71) 

log(GDP pc) -0.0858 
 (-0.81) 

log(av. size dwelling) 0.853** 
 (2.52) 

Share of urban  -0.428 
population (-1.45) 

Intercept -1.824 
 (-0.53) 

Sigma -4.199*** 
 (-7.78) 

Gamma 2.514*** 
 (4.16) 

Mu 5.895** 
 (2.49) 

Eta 0.00222*** 
 (3.24) 

Lambda 3.515 
N 200 

Battese and Coelli (1992) model. t 
statistics based on robust standard 
errors in parenthesis. * p<0.1, ** 
p<0.05, *** p<0.01. 𝜆 (Signal-to-Noise 
ratio)  = 𝜎! 𝜎! provides information on 
the relative contribution of 𝑢!" and 𝑣!" 
on the decomposed error term 𝜀!" 
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Table 4 – Stochastic frontier analysis with TFE model 

  (1) (2)  
Dep variable: log electr 

consumption 
Truncated 

normal Exponential 

log(electr_price) -0.214*** -0.213*** 

 (-3.59) (-10.27)  
log(GDP pc) -0.477*** -0.488*** 

 (-5.83) (-12.99)  
log(av size dwelling) 0.623** 0.650*** 

 (2.13) (4.39)  
Share urban population -1.297*** -1.329*** 

  (-5.22) (-7.27)  
Variance of the inefficiency component 

log(technology) -0.812* -1.025*** 
  (-1.71) (-3.38)  

Sigma U (average) 0.0429 0.0210 
Sigma V 0.0388 0.0393 
Lambda 1.106 0.534  

N 200 200  
True fixed effects model. t statistics based on robust 
standard errors in parenthesis. * p<0.1, ** p<0.05, *** 
p<0.01 

 

Figure 2 – Efficiency scores by country – total electricity consumption 

 
  

.8
5

.9
.9

5
1

.8
5

.9
.9

5
1

.8
5

.9
.9

5
1

1990 1995 2000 2005 2010 1990 1995 2000 2005 2010

1990 1995 2000 2005 2010 1990 1995 2000 2005 2010

Austria Denmark France Germany

Greece Italy Netherlands Slovenia

Sweden United Kingdom

Efficiency scores (trunc normal) Efficiency scores (exp)

Year



33 
 

Table 5 – Stochastic frontier analysis with TFE model (domestic vs foreign technology) 

Dep variable: log electr 
consumption (1) (2)  

log(electr_price) -0.215*** -0.217*** 

 (-3.56) (-3.05)  
log(GDP pc) -0.477*** -0.533*** 

 (-6.25) (-6.74)  
log(av size dwelling) 0.615** 0.708*** 

 (2.31) (2.66)  
Share urban population -1.327*** -1.246*** 

  (-5.49) (-4.26)  
Variance of the inefficiency component 

log(foreign_tech) -1.208*   

 (-1.85)   
log(domestic tech)  -0.817**  

    (-2.43)  
Sigma U (average) 0.0223 0.0189  

Sigma V 0.0384 0.0409  
Lambda 0.581 0.462  

N 200 200  
True fixed effects model with exponential distribution. 
t statistics based on robust standard errors in 
parenthesis. * p<0.1, ** p<0.05, *** p<0.01 

 
Table 6 – Stochastic frontier analysis with TFE model (by appliance) 

  (1) (2)  
Dep variable: log electr 

consumption 
Washing 

appliances 
Cooling 

appliances 
log(electr_price) -0.184*** -0.204*** 

 (-7.85) (-8.14)  
log(GDP pc) -0.557*** -0.466*** 

 (-12.86) (-11.88)  
log(av size dwelling) 0.870*** 0.535*** 

 (5.14) (3.54)  
Share urban population -1.217*** -1.423*** 

  (-5.77) (-7.77)  
Variance of the inefficiency component 

log(technology) -0.881*** -0.691*** 

 (-2.68) (-2.79)  
Sigma U (average) 0.0215 0.0398  

Sigma V 0.0453 0.0316  
Lambda 0.474 1.260  

N 200 200  
True fixed effects model with exponential distribution. 
t statistics based on robust standard errors in 
parenthesis. * p<0.1, ** p<0.05, *** p<0.01 
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Figure 3 – Efficiency scores by country – by type of appliance 
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Appendix A – Descriptive statistics 
 

Table A1 – Summary statistics and sources of data employed in the analysis. 

Variable Unit of measure Mean N Min Max SD Source 

log(elec. consumption) kWh 7.276 200 6.809 7.539 0.16 

Odyssee-Enerdata 

log(elec. cons. cooling appl) kWh 6.792 200 6.248 7.29 0.266 

log(elec. cons. washing appl.) kWh 6.258 200 5.627 6.695 0.277 

log(elec. cons. freezers) kWh 6.199 200 5.611 6.541 0.233 

log(elec. cons. refrigerators) kWh 5.967 200 5.282 6.65 0.364 

log(elec. cons. washing machines) kWh 5.478 200 4.927 6.011 0.25 

log(elec. cons. dishwashers) kWh 5.628 200 4.942 6.192 0.347 

log(end-use electricity price) 2005 PPP US 
dollars/kWh -2.071 200 -2.92 -1.416 0.32 IEA-Eurostat 

log(per-capita income) 2005 PPP US dollars 10.181 200 9.235 10.548 0.251 Word Bank 

log(dwelling size) sq. meters 4.514 200 4.244 4.714 0.111 Odyssee-Enerdata 

Share of urban_pop percentage 0.726 200 0.548 0.868 0.095 Word Bank 

log(foreign tech.) patents 2.844 200 0.076 4.825 1.164 OECD REGPAT, 
Eurostat PRODCOM, 

Eurostat Comext log(domestic tech.) patents 1.545 200 0 4.426 1.298 
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Appendix B – Selection of appliance-specific energy efficiency patents 
 

Table B1 - CPC Energy Efficiency Classes (Y02B) 

Y02B 40 - ''Climate Change Mitigation 
Technologies'' 

Y02B 
40/30 

Refrigerators or freezers 
Y02B 40/32 
Y02B 40/34 

Y02B 
40/40 

Dishwashers 
Y02B 40/42 
Y02B 40/44 

Y02B 
40/50 

Washing machines 
Y02B 40/52 
Y02B 40/54 
Y02B 40/56 
Y02B 40/58 
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