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Abstract

This Chapter reviews the theoretical liteature on entry games and free
entry equilibria. We show that a wide range of symmetric oligopoly mod-
els share common comparative statics properties. Individual pro�ts and
quantities decrease in the number of �rms, and tend to competitive or
monopolistic competitive equilibria when the number of �rms increases
inde�nitely. The maximum number of �rms sustainable in a symmetric
long run equilibrium depends on technology (economies of scale), prefer-
ences (market size) and strategies (toughness of price competition). On
the normative side, in homogeneous product markets the business stealing
e¤ect drives the result of excessive entry, whereas adding product di¤er-
entiation and the utillity from variety may revert the result. We then
consider asymmetric free entry equilibria that exploit the aggregative na-
ture of many oligopoly models. Finally, we discuss endogenous sunk costs
and persistent concentration and frictionless entry and contestable mar-
kets.

JEL Codes: L1, L13, D43
Keywords: Entry, Free entry equilibria, endogenous and exogsnous

sunk costs, contestable markets

1 Introduction

Which elements may explain why certain industries are populated by a large
number of �rms, each covering a small fraction of total output, whereas other
markets are dominated by a small number of large �rms that supply a relevant
fraction of customers? These questions are at the core of the topics studied in
Industrial Organization from the very beginning.1 These research topics have
been approached in the early phases of Industrial Economics mostly in an empir-
ical perspective 2 within the Structure-Conduct-Performance paradigm, while

�Forthcoming in the Handbook of Game Theory and Industrial Organization, Corchon
L. and Marini M (eds), Edward Elgar, 2016. I thank Simon Anderson, Emilio Calvano and
Chiara Fumagalli for very useful discussions and suggestions. Usual disclaimers apply.

1See Bain (1956) and Scherer (1980).
2See for a comprehensive survey of the empirical literature Schmalensee (1989).
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the theoretical foundations of endogenous market structures have been explored
more rigorously in the game theoretic framework of the new Industrial Orga-
nization. The analytical framework that has been developed looks at market
entry and exit as the process that endogenously determines the number and
characteristics of active �rms. In this setting, then, other research questions
emerge. How do these market structures change in reaction to a variation in
some key parameters? Are we able to identify a set of robust comparative sta-
tics properties in oligopoly markets, despite the rich variety of models in the
IO literature? And �nally, on the normative side, does entry into the market, a
key component of the competitive process, leads to a welfare maximizing out-
come, or the number and characteristics of �rms may be excessive or short of
the e¢ cient one?
This Chapter deals with the theories of market equilibria when the number

and characteristics of the active �rms are endogenously determined through the
process of entry. More precisely, we shall review the literature on entry games
and free entry equilibria in a multi-stage game framework. A large number
of potential entrants decide �rst whether to enter or not; once all the �rms
have undertaken their entry decisions, the active �rms compete according to
some oligopoly game. The Chapter is organized as follows. In Section 2 we
present the general analytical framework. In Section 3 we analyze a wide range
of symmetric oligopoly models to identify the relationship between the number
of �rms and the market equilibria: we start with homogeneous products and
competition in strategic substitutes (Section 3.1), moving then to di¤erenti-
ated products and competition in strategic complements (Section 3.2), o¤ering
a general explanation of the comparative statics properties (Section 3.3) and
concluding with cartels (Section 3.4). Next we consider free entry equilibria
and the determinants of the maximum number of �rms (Section 4). Finally,
we consider symmetric entry games under a normative perspective (Section 5),
looking at the comparison between the free entry and the welfare maximizing
number of �rms. In Section 6 we move to asymmetric free entry equilibria
that exploit the aggregative nature of most oligopoly models. We then present
the case of endogenous sunk cost and persistent concentration (Section 7) and
the one of frictionless entry and contestable markets (Section 8). Concluding
remarks follow.

2 Entry games

There are several ways to model the entry process and the market interaction
among active �rms. The various set-ups allow to highlight di¤erent issues,
focussing on distinct e¤ects that interact in the overall market dynamics. A key
distinction can be drawn between the environments in which the entry decisions
precede the market strategies, and those where entry decisions of some �rms
are undertaken after market strategies of others have been already chosen and
observed.
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In the former case, the market strategies of individual �rms cannot be chosen
with the purpose of a¤ecting the entry decisions of any �rm, since these latter
have already been undertaken, although the features of the market equilibria af-
fect the early decision to enter. In this perspective, multi-stage games represent
a suitable formal framework. There is a large group of m potential entrants
j 2 Im that choose whether to enter, incurring a �xed set-up cost F > 0, or not;
then, once they have taken their decision and the set of n � m entrants i 2 In is
common knowlege, the active �rms play a market game. This set-up is usually
adopted to study long run free entry equilibria, in which a set of exogenous
variables referred to the primitives of technology and preferences explain the
long run market structure.
Alternatively, in a second class of strategic environments, a subset of early

entrants (incumbents) commit to observable market strategies before the other
�rms (entrants) decide whether to enter or not. The incumbents�initial strategy,
then, may a¤ect the entry decisions, explaining why this set-up is widely used
to study strategic entry deterrence and foreclosure. In this environment, the
market structure is explained by foreclosure strategies, based on a rich set of
strategic tools, rather than on market fundamentals.
The two set-ups are useful to explore di¤erent and complementary issues and

are characterized by a di¤erent time horizon. Sequential entry with incumbents
and entrants is a more realistic representation of short run market dynamics,
since entry is typically an on-going process where already established and new
�rms interact. The possibility of foreclosure, then, is an empirically relevant
issue that characterizes the evolution of markets. At the same time, multi-stage
entry game allow to abstract from these short run phenomena and focus on
the underlying features of preferences and technology as long run drivers of
market evolution. By moving the attention to this complementary perspective
we can identify fundamental forces that, despite the frictions that in the short
run may slow down the process and foreclose the market, push towards a more
or less concentrated market. Since in this Chapter the focus is on long run
market structures rather than foreclosure, we will consider several and di¤erent
speci�cations of multi-stage entry game.
A second relevant feature that is recurring across models is the assumption

of symmetric �rms. Supply side symmetry is a natural assumption in a long
run perspective, since we may think that any barrier to access to best prac-
tice technology, as patent protection or private know how, tends to vanish in
the long run. Demand side symmetry, consistent with homogeneous products
or horizontal product di¤erentiation and di¤erent varieties, is a convenient as-
sumption when we want to analyze the number of entrants and the distribution
of market shares.3

3As it will be clear in the next sections, this approach does not prevent from considering
also environments where, for instance, �rms o¤er goods of di¤erent quality, being therefore
di¤erently attractive for consumers. What we maintain is that, even in these cases, there is
a further dimension of (horizontal) product di¤erentiation such that for each level of quality
several �rms may further di¤erentiate their products by variety. In this case, symmetry is
preserved at each layer of quality.
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The di¤erent models considered in the next sections make use of the symme-
try assumption at di¤erent levels, either applying it to the whole population of
potential entrants, or to a subset of them identi�ed as marginal entrants, while
allowing for asymmetries across majort market players. We shall see that the
symmetry assumption is also at the core of the analysis of potential competition
and contestable markets.

3 Symmetric Oligopoly Markets

We start our analysis of entry games by considering the (second stage) market
games where n �rms are active, having decided to enter in the �rst stage. In
this section we consider symmetric market games where all the n �rms share the
same (best practice) technology and no one has an advantage on the demand
side, e.g. a higher quality product. In this setting, when �rms adopt the same
strategies ai = a, i 2 In, then they obtain the same level of pro�ts. A symmetric
environment greatly simpli�es the analysis of free entry equilibria, since the
equilibrium pro�ts, as well as the equilibrium strategies, consumers� surplus
and welfare, all depend on a vector x of parameters related to the properties
of costs (technology) and demand (preferences), and on the number of �rms
n: �i(a�i ; a

�
�1) = ��(n;x). Market equilibria once the entry process has been

completed, therefore, can be analyzed simply in terms of the number of �rms
n. The individual equilibrium pro�ts ��(n;x) are therefore the object that
potential entrants consider when, at the initial stage of the game, they choose
whether to enter or not, given their expectation of the number of �rms that will
enter.
Oligopoly theory o¤ers a very rich set of models that describe market inter-

action among n competitors, ranging from homogeneous to di¤erentiatied prod-
ucts and distinguishing competition in strategic substitutes or complements. In
all these environments, moreover, demand and cost functions can be speci�ed
di¤erently. Finally, beyond static, possibly multi-stage games, the literature on
tacit collusion adds to the toolkit the analysis of cartels. A general theory of
free entry equilibria has to encompass all these classes of models, admitting a
variety of business strategies, modes of strategic interaction and features of de-
mand and costs. In this perspective, then, the key point is whether there exist
some regularities across di¤erent models in the relationship between the number
of (symmetric) active �rms n and the equilibrium pro�ts they obtain ��(n;x).
A �rst, relevant result, that we are going to present in the next sections, is
that, despite the signi�cant di¤erences in oligopoly equilibria across models, we
can establish under very general conditions a negative relationship between the
equilibrium pro�ts and the number of �rms.
We organize the discussion considering three di¤erent cases: homogeneous

products and strategic substitutes, di¤erentiated products and strategic com-
plements and repeated games.
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3.1 Homogeneous products and strategic substitutes

Our �rst look at symmetric oligopoly equilibria refers to a market with n �rms
producing a homogeneous product and competing in strategic substitutes, usu-
ally associated with the Cournot model. Since the pioneering work of Cournot
(1838) a large set of contributions has explored the conditions for the existence
and characterized the equilibria when n �rms compete in quantities. McManus
(1962) and (1964) and Roberts and Sonnenschein (1976), independently proved
the existence of a symmetric equilibrium in symmetric Cournot games with con-
vex costs. Novshek (1985) showed that an n-oligopoly has a Nash equilibrium if
each �rm�s marginal revenue is decreasing in the other �rms�aggregate output.
A step forward in proving the existence of Cournot equilibria under general
conditions is in Vives (1990), who showed in the duopoly case the relationship
between the assumptions of the previous literature and the submodularity of
Cournot games. Supermodular games and the techniques of monotone compar-
ative statics4 , have proved to be extremely useful tools to explore the properties
of Cournot oligopolies and to identify the general conditions under which the
comparative statics of equilibria can be analyzed. We summarize here the main
results following this approach as in Amir and Lambson (2000).
Consider an oligopoly with n �rms o¤ering a homogeneous product and pro-

ducing with the same cost function C(qi) and incurring no capacity constraint
over the relevant output range. Market inverse demand P (Q) is a continuous

and di¤erentiable function of total output Q =
nP
i=1

qi. The pro�t function of

�rm i, then, is:
�i(qi;Q�i) = P (Q)qi � C(qi)

where Q�i = fqjgj 6=i is the vector of outputs of the other �rms. In this tra-
ditional speci�cation, each �rm maximizes its pro�ts by choosing a level of
output for given strategies of the other �rms, Q�i. It is well recognized that
under standard assumptions �rm i�s best reply bqi(Q�i) = argmaxqi �i(qi;Q�i)
is downward sloping, implying a submodular game and competition in strategic
substitutes.
Let us de�ne

�(qi; Q) := �P 0(Q) + C 00(qi): (1)

Then, Amir and Lambson (2000) prove that if�(qi; Q) > 0 on the relevant range
of outputs and the inverse demand function is log-concave, there exists a unique
and symmetric equilibrium, with individual output q�(n) nonincreasing in n
and total output Q�(n) nondecreasing in n.5 This condition holds, for instance,
in the set-up adopted in the works of McManus, Roberts and Sonnenschein

4See Milgrom and Roberts (1990) and (1994) and Milgrom and Shannon (1994).
5Amir and Lambson (2000) prove (Theorem 2.2.) a more general result that does not

require log-concavity of the inverse demand function and that allows for multiplicity of Cournot
equilibria. In this case the comparative statics properties with respect to n of total equilibrium
output and the equilibrium output of n� 1 �rms are preserved considering the values of the
extremal equilibria. We focus in the text on uniqueness to ease the exposition.
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(1976) and Novshek (1985) quoted above and is consistent with the framework
proposed in Vives (2000).
To illustrate this result with an example let us consider the linear Cournot

model: market demand is Q = S � [�� �p], where S measures market size, e.g.
the number of consumers. Then, the inverse demand is P (QS ) = a � b

Q
S where

a = �
� , b =

1
� and Q is total supply. Firms produce at constant marginal cost

c 2 (0; a) and compete in quantities. Then, each �rm selects its optimal output

by solving q�i = argmaxqi
�
P (QS )� c

�
qi. The symmetric equilibrium quantity

q�(n) satis�es for all �rms the �rst order conditions:�
P (
nq�

S
)� c

�
� P 0 q

�

S
= 0, (2)

Substituting and solving for the symmetric equilibrium we get:

q�(n) = S
a� c
b(n+ 1)

, p�(n) =
a+ nc

n+ 1
� c, ��(n) =

S

b

�
a� c
n+ 1

�2
: (3)

When the number of �rms increases, therefore, the individual quantity de-
creases whereas total output increases. Consequently, the market clearing price
falls and tends to the marginal cost when the number of �rms increases inde�-
nitely. Finally, the equilibrium pro�ts, gross of the �xed entry costs, decrease in
n and tends to zero in the limit, due to the combined quantity and price e¤ects.
This pattern characterizes the so called Cournotian paradigm, a representa-

tion of the market equilibrium that depends on the number of �rms and that
moves from the monopoly to the perfectly competitive equilibrium as n increase
from 1 to in�nity. Perfect competition, in this setting, corresponds to the limit-
ing case when each �rm supplies an in�nitesimal amount of output in a market
populated by an in�nite number of neglibile �rms.
This structural view of perfect competition can be easily derived from the

�rst order condition that guarantee a pro�t maximising solution for any number
of �rms. Equation (2), indeed, implies that the market clearing price tends to the
marginal cost when the last term vanishes. There are two possible explanations
why P 0 q

�

S ! 0. One argues that when �rms are small with respect to the
market, they follow a price taking behavior, that is they expect the market price
not to react to any change in their individual ouput. This case corresponds to
assuming P 0 = 0 in a perfectly competitive market. The other explanation, that
is consistent with the structuralist view of the Cournotian paradigm, instead
focusses on the fact that it is the individual quantity that vanishes as n becomes
inde�nitely large, whereas P 0 < 0 even in the limit. In this latter case, indeed,
limn!1 q

�(n) = 0, as evident from (3).
It is interesting to notice that the last term in (2) represents also the nega-

tive externality that characterizes strategic interaction in a Cournot game, i.e.
@�i
@qj

= P 0 q
�

S . In other words, with Cournot competition each �rm a¤ects the
rivals�pro�ts when it increases its quantity since it makes the price falling and
reduces the revenues that the competitors obtain from their production. The
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level of individual production, therefore, a¤ects multiplicatively this externality,
that vanishes when each �rm produces a negligible output. Then, a perfectly
competitive market in a Cournotian perspective is also characterized in the limit
by vanishing externalities across �rms. This result con�rms the idea that in a
perfectly competitive market no externality occurs, a feature that is driven by
the same e¤ect (limn!1 q

�(n) = 0) that explains why the competitive price
tends to the marginal cost.
Finally, market size S increases individual and total quantities as well as the

equilibrium pro�ts.

3.2 Di¤erentiated products and strategic complements

A di¤erent class of oligopoly models moves into the realm of di¤erentiated prod-
ucts and assumes that �rms compete in prices, a framework that entails strate-
gic complementarities. In the product di¤erentiation literature, moreover, we
can assume that either di¤erentiation does not break the intrinsic symmetry of
�rms�market positions, or alternatively that product di¤erentiation introduces
a competitive advantage for some �rms with respect to the others. The former
case reminds the idea of (horizontal) di¤erentiation by variety, where products
di¤er in terms of characteristics, each one being more �t to a speci�c subset of
customers. The latter, instead, captures the idea of (vertical) di¤erentiation in
quality. Given our focus on symmetric equilibria, in this section we shall con-
sider several approaches to di¤erentiation by variety. We shall consider entry
and di¤erentiation by quality in Section 7.
There are three main ways to model te demand side when products are (hor-

izontally) di¤erentiated. The representative consumer approach characterized
by preference for variety, the discrete choice model where the external observer
is able to reconstruct consumers�behavior up to a random component related to
unobservable individual characteristics, and the address approach, that assumes
heterogeneous consumers with inelastic demand.6

Let qi = S �Di(pi;p�i) be the demand for product i 2 In, where S measures
the size of the market and p�i is the vector of prices other than pi. Let us fur-
ther assume Di(:) is continuous and di¤erentiable and Ci(Di(:)) = cDi(pi;p�i).
Finally, let us assume that each �rm o¤ers only one variety.7 Each �rm solves

6For a detailed analysis of these three approaches and the relationships among them see
Anderson et al. (1992). On the representative consumer models see, for instance, the CES
representation adopted in Spence (1976) and Dixit and Stiglitz (1977) and the linear repre-
sentation in Levitan and Shubik (1980) and Singh and Vives (1984). On the interpretations
of random utility models Manski (1977) assumes that utility is deterministic but the external
observed cannot perfectly observe it, while Quandt (1956) assumes the individual behavior
to be intrinsically probabilistic. Finally, the address model approach was �rst proposed in
Hotelling (1929). See also Salop (1979) and d�Aspremont et al. (1979).

7As we shall discuss in Section 4, assuming single product �rms makes the analysis of the
maximum number of varieties and that of �rms equivalent. With multiproduct �rms, instead,
the maximum number of varieties will be larger than the number of active �rms in a free entry
equilibrium.
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the following problem: maxpi(pi � c)Di(pi;p�i). Under standard assumptions
on the strategy space being compact and convex, and the pro�t function be-
ing quasi-concave, the following equation identi�es the necessary and su¢ cient
conditions for a maximum:

p�i � c
p�i

=
Di(p

�
i ;p�i)

p�i
@Di

@pi

=
1

"i
(4)

where "i is the price elasticity of demand for product i. In a symmetric equilib-
rium p�i = p

�(n), i 2 In, and

"�(n) =
p�(n)@Di

@pi

Di (p�(n);p�(n))
. (5)

Hence, the pattern of equilibrium prices p�(n) when the number of �rms in-
creases depends on the corresponding pattern of "�(n). If limn!1 "

�(n) = 1,
then in the limit the price converges to the marginal cost, and we replicate the
perfectly competitive equilibrium already found in the case of Cournot competi-
tion. When, instead, limn!1 "

�(n) = " with " �nite, a positive mark up persists
in the limit, a pattern associated to Chamberlinian monopolist competition.8

As we shall see, the limiting properties of the di¤erent approaches to product
di¤erentiation are consistent with either of the two alternatives.
Let us consider �rst the case of convergence to competitive equilibria. Gener-

alizing the duopoly linear model of Singh and Vives (1984) as in Häckner (2000),
the utility function of the representative consumer is quasi-linear according to
the expression:

U(q1; :::; qn; I) = �
nX
i=1

qi �
1

2

0@ nX
i=1

q2i + 2

X
j 6=i

qiqj

1A+O (6)

where 
 2 [0; 1) measures product substitutability and O is the money spent on
outside goods. The demand system, then, is:

Di(pi;p�i) = S �
�(1� 
) + 


P
j 6=i pj � [
(n� 2) + 1] pi

(1� 
) [
(n� 1) + 1] (7)

where S measures the size of the market, i.e. the number of representative
consumers. Notice that in a symmetric price con�guration pi = p for i 2 In,
�rm i�s demand

Di(p;p) = S �
�� p

[
(n� 1) + 1]
decreases in the number of �rms, since consumers spread their purchases over a
larger set of varieties. The demand elasticity in a symmetric price equilibrium
is:

"�(n) =
[
(n� 2) + 1] p�(n)
(�� p�(n)) (1� 
) : (8)

8See Vives (1999), pp 160-64 for a detailed discussion.

8



Hence, lim "�(n) =1 being p�(n) < �. Indeed, the equilibrium price

p�(n) =
�(1� 
) + c [
(n� 2) + 1]


(n� 3) + 2 (9)

tends to the marginal cost when n ! 1. Moreover, the equilibrium quantity
and pro�ts

q�(n) = S � (�� c) [
(n� 2) + 1]
[
(n� 1) + 1] [
(n� 3) + 2] (10)

and

��(n) = S � (�� c)
2(1� 
) [
(n� 2) + 1]

[
(n� 1) + 1] [
(n� 3) + 2]2
(11)

are decreasing in the number of �rms n.
A similar pattern can be obtained within the address models of product dif-

ferentiation. Following Salop (1979) we can extend the original linear Hotelling
duopoly to encompass n active �rms by considering a circular market of length
1 where S consumers are uniformely distributed according to their individual
preferred version t. Firms i 2 In produce at constant marginal cost c and sell
horizontally di¤erentiated varieties xi at price pi, being evenly distribued at
xi = i=n along the circle. Finally, a consumer of type t purchasing variety i
has a net utility u� � pi � (xi � t)2=
. Parameter 
 positively a¤ects product
substitutability. When 
 is large the utility mostly depends on the price and
the consumers are ready to switch to a more convenient, although more distant,
variety. The demand system, in this setting, is given by:

Di(pi; pi�1; pi+1) = S

�
1

n
� n
pi +

n


2
(pi+1 + pi�1)

�
(12)

and displays localized competition between neighboring varieties, a notable fea-
ture of the address approach. The demand elasticity in a symmetric equilibrium
is

"�(n) = 
n2p�(n) (13)

and limn!1 "
�(n) =1, implying convergence to the marginal cost. Notice also

that, for given n, the elasticity is increasing in the substitutability parameter 
.
The symmetric equilibrium price, quantity and pro�ts, indeed, are given by:

p�(n) = c+
1


n2
, q�(n) =

S

n
��(n) =

S


n3
. (14)

Comparing the symmetric equilibria in the Singh and Vives and in the Sa-
lop models of product di¤erentiation with those obtained in the Cournot linear
model we �nd signi�cantly similar properties of symmetric market equilibria,
with price and individual quantity falling in the number of �rms and the price
approaching the marginal cost as the number of �rms tends to in�nity. Indeed,
the driving e¤ect we highlighted in Cournot, based on vanishing individual quan-
tities still applies. In the Salop model, however, an additional interesting e¤ect
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is at work. When n increases inde�nitely the market is completely covered with
(locally) almost identical varieties. Localized competition between adjacent va-
rieties reproduces a Bertrand environment, leading to marginal cost pricing.
This latter e¤et corresponds to an increasingly intense price competition be-
tween closer and closer variety. In other words, in the localized competition
model of product di¤erentiation an increase in n produces at the same time a
vanishing quantity externality and an increasing price externality, both pushing
towards convergence to a competitive outcome.
We can now turn to the case of monopolistic competition, when positive

mark-ups are associated with a market populated by a very large (i.e. in�nite)
number of in�nitesimal �rms. We illustrate this case referring to the multinomial
logit model, covering also the discrete choice approach to product di¤erentiation.
Let the utility of a consumer be described by a deterministic component U(pi) =
��pi and an additive random i.i.d. component �i that is distributed according
to the double exponential distribution F (x) = exp� [exp�(
x+ �] where �
is the Euler�s constant and 
 a positive constant that negatively a¤ects the
variance. Then, the resulting probability of choosing product i given the vector
of prices (p1; :::; pn) is

Pi(pi;p�i) =
exp(�
pi)

nP
j=1

exp(�
pj(�)
. (15)

Then �rm i�s expected pro�ts are:

�i(pi;p�i) = S � (pi � c)Pi(pi;p�i):

We can observe that @Pi
@pi

= 
Pi(1� Pi) and that, therefore, parameter 
, once
again, captures product substitability. Moreover, in a symmetric equilibrium
Pi(p;p)= 1

n . Then, the elasticity of demand is

"�(n) =

(n� 1)p�(n)

n
; (16)

with limn!1 "
�(n) = 
p�(n) �nite.9 Hence, the �rms obtain a positive mark-up

when n tends to in�nity. The equilibrium price, quantity and pro�ts are:

p�(n) = c+
n


 (n� 1) , q�(n) =
S

n
, ��(n) =

S


 (n� 1) . (17)

The multinomial logit model10 presents a di¤erent pattern of price adjust-
9Parameter 
, as in the previous models, positively a¤ects price elasticity for given n.
10A similar result is obtained, within the representative consumer approach, assuming Cobb-

Douglas preferences between a numeraire good q0 and a set of di¤erentiated products qi with
CES preferences:

U(qo; q1;:::; qn) = q
1��
0 eq� with 
 2 (0; 1)

and

eq =  nX
i=1

q
��1
�

i

! �
��1

:

See Spence (1976), Dixit and Stiglitz (1977) and Anderson et al (1992) p. 226-9.
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ment, with the equilibrium price decreasing in the number of �rms and con-
verging to a mark-up 1=
 when n ! 1. Despite the positive mark-up, the
�rm�s pro�ts vanish in the limit, since the individual output becomes negligi-
ble, as it is in a monopolistic competition environment. We can also notice
that the basic channel of interaction across �rms vanishes as well in the limit:
@Pi
@pj

= 
PiPj =


n2 . Hence, the "competitive" component of monopolistic com-

petition is associated to vanishing externalities, as already observed discussing
the Cournot model.

To sum up, the di¤erent models of product di¤erentiation display similar
comparative static properties with respect to the number of �rms, with the
equilibrium price, quantity and pro�ts falling in n. The main di¤erence rests
on the convergence of the equilibrium prices to the marginal cost, as in a per-
fectly competitive market, or instead to a positive mark-up that characterizes
monopolistic competition. Moreover, the size of the market, in all cases, pushes
up pro�ts.
The results of the product di¤erentiation literature provide an additional

insight that is related to the intensity of price competition and its e¤ect on n-
�rms market equilibria. In the three models, with a little abuse of notation, we
have represented product substitutability through parameter 
, with the price
elasticity increasing and the price and pro�ts falling in 
.

3.3 Explaining the comparative statics in a uni�ed frame-
work

In the previous sections we have shown that the market equilibria, described by
prices and quantities, share similar comparative statics properties across a wide
range of di¤erent oligopoly models and features of preferences and technology.
This raises a natural question whether this common pattern may be accounted
for through a uni�ed explanation. The theory of monotone comparative statics
developed by Milgrom and Roberts (1990) and (1994) and Milgrom and Shannon
(1994) o¤ers an enlightening perspective. Their approach allows to develop new
tools to study how equilibria change in reaction to a variation in the parame-
ters and constraints of the maximization problem, moving beyond the tradition
approach based on the Implicit Function Theorem.11 Quoting Amir (2003), "if
in a maximization problem, the objective re�ects a complementarity between
an endogenous variable and an exogenous parameter, in the sense that having
more of one increases the marginal return to having more of the other, then
the optimal value of the former will be increasing in the latter. In the case
of multiple endogenous variable, then all of them must also be complements
so as to guarantee that their increases are mutually reinforcing". The former

11 Importantly, the new tools allow to deal with the comparative statics of multiple equilibria,
studying how extremal equilibria move in reaction to a change in exogenous variables. To the
purpose of our discussion, however, we shall focus on the case of unique equilibria.
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property corresponds to increasing di¤erences (between the endogenous and the
exogenous variables, and more in general between two variables), whereas the
latter quali�es the function to be maximised as supermodular.12

When a game is supermodular and characterized by increasing di¤erences,
an increase in the strategy of one player increases the marginal payo¤ of the
strategy of the other players, inducing them to adjust upwards their optimal
choice. This case, therefore, corresponds to upward sloping reaction functions
or, in the classi�cation of Bulow et al. (1985), strategic complementarity. More-
over, increasing di¤erences between the endogenous variables and the exogenous
variable implies that an increase in the exogenous variable increases the mar-
ginal payo¤ of the strategy of the players, with an upwards shift in the best
reply functions.
Increasing di¤erences then can be easility turned into decreasing di¤erences

by reverting the sign of the adjustment or de�ning a new exogenous variable
that is the negative of the original one. In this case, an increase in the exogenous
variable induces a contraction in the endogenous one. 13

We can borrow from the theory of monotone comparative statics two condi-
tions, described in the statements of Theorem 5 and 6 of Milgrom and Shannon
(1994) that, in our setting, �t the problem. The exogeneous variable14 is the
number of �rms n whereas the endogenous variables are, depending on the
model speci�cation, the quantities qior prices pi. Then, we require the pro�t
functions to be supermodular and to display decreasing di¤erences. Since we
consider continuous and di¤erentiable functions, the two conditions correspond
to @�i

@ai@aj
> 0 and @�i

@ai@n
< 0 for i; j = In, i 6= j, where ai describes �rm i�s

strategy, i.e. quantity or price. Moreover, in order to focus on the comparative
statics, we give for granted that an equilibrium exists and is unique, by assum-
ing that the pro�t function is strictly quasi-concave in the choice variable and
that the best reply slope meets the contraction mapping requirement.
Starting with the Cournot case, a �rst problem arises since in the traditional

description competition is in strategic substitutes, and the game is submodular
rather than supermodular.15 A way out of this problem borrows from an early
intuition in Novshek (1985) and is developed in Amir and Lambson (2000).
Indeed, a notable property of the Cournot model is that the pro�ts can be

12See Vives (1999), Chapter 2. When the payo¤ functions are smooth and the strategy
space of each �rm and the exogenous parameters space are one-dimensional supermodularity
and increasing di¤erences boil down to the condition that the second cross partials between
each �rm strategic variable and the other �rms� strategic variable and with the exogenous
parameter are positive.
13 Increasing di¤erences is a cardinal property and can be replaced by the ordinal Spence-

Mirlees single-crossing property considered in Milgrom and Shannon (1994). When this prop-
erty holds, if an increase in the choice variable is pro�table when the exogenous variable is
low it is still pro�table when the exogenous variable is high, although it is not required, as in
the case of increasing di¤erences, that the pro�tability is higher in the latter case.
14Here for convenience we measure the number of �rms n as a continuous variable de�ned

on the positive reals.
15While in a Cournot duopoly this issue is easily adjusted by describing one of the strategies

as �q, transforming the setting into a supermodular game, with n > 2 �rms this is no more
possible.
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expressed as a function of the own output qi and of the aggregate level of output
of the other n� 1 �rms Q�i =

P
j 6=i qj . i.e.

�i(qi; Q�i) = P (qi +Q�i)qi � C(qi):

Moreover, we can describe �rm i�s strategy, rather than referred to the choice of
its own output qi as the selection of a certain level of total output Q for given
ouput Q�i supplied by the competitors. In this alternative formulationb�i(Q;Q�i) = P (Q)(Q�Q�i)� C ((Q�Q�i)) : (18)

Then,
@2b�i

@Q@Q�i
= C 00(Q�Q�i)� P 0(Q) = � (19)

that corresponds to (1). Then, the condition � > 0 implies the supermodularity
of the modi�ed Cournot game. Decreasing di¤erences can be easily established
noting that when the other n � 1 �rms choose the same output q then Q�i =
(n� 1)q. Then, substituting in the �rst order conditions for the choice of Q in
the modi�ed Cournot problem we have:

@b�i
@Q

= P 0(Q) (Q� (n� 1)q) + P (Q)� C 0 (Q� (n� 1)q) . (20)

Hence,
@2b�i
@Q@n

= q� > 0 (21)

when the game is supermodular. We conclude that the equilibrium total ouput
Q�(n) is increasing in the number of �rms. In a symmetric equilibriumQ��i(n) =
n�1
n Q�(n), and therefore the ouput of the �rms other than i is increasing in n as
well, since both terms n�1n andQ�(n) are positive and increasing in n. Moreover,
since �rm i�s best reply in the original Cournot problem is downward sloping
and Q��i(n) is increasing in n, the individual output q

�
i (n) is decreasing in the

number of �rms. Finally, since demand is bounded, when n!1 we must have
Q�(n) = nq�(n) �nite and therefore limn!1 q

�(n) = 0. Then, given the �rst
order conditions of the original Cournot problem, p�(n)! C 0 (q�(n)).
Our discussion o¤ers a clear insight on the advantages of the techniques of

monotone comparative statics. A single and general condition, � = C 00(qi) �
P 0(Q) > 0, generates supermodularity of the modi�ed Cournot problem and
Q�(n) and Q��i(n) increasing in the number of �rms, while the comparative
statics on individual output q�i (n) and the limiting competitive result on the
price derive from the �rst order conditions of the original Cournot problem.
Interestingly, the condition � > 0 includes elements of demand and costs, and
both jointly de�ne the relevant condition. This extends with respect to previous
contributions that explored the properties of Cournot equilibria making speci�c
assumptions on costs or demand.16

16See Amir and Lambson (2000) for a general analysis of equilibria in Cournot games.
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Turning to the models of product di¤erentiation and price competition, in
a n-�rm oligopoly each one solves maxpi piDi(pi;p�i;n) � C(Di(:)) where we
emphasize that, di¤erently from the homogeneous product case, the number of
substitute products n may directly enter into the expression of the demand for
product i. Moreover, notice that in our symmetric environment we assume that
all �rms have the same cost structure, i.e. Ci(Di(:)) = C(Di(:)).
If

@2�i
@pi@pj

=
@Di
@pj

+ (pi � C 0)
@2Di
@pi@pj

� C 00 @Di
@pj

@Di
@pi

> 0; (22)

for any i; j = In, i 6= j, the game is in strategic complements, that is the
condition for supermodularity is met. Then, the equilibrium prices fall in the
number of �rms if

@2�i
@pi@n

=
@Di
@n

+ (pi � C 0)
@2Di
@pi@n

� C 00
�
@Di
@pi

�2
< 0.

Substituting the �rst order conditions pi � C 0 = � Di

@Di=@pi
and rearranging we

get:
@2�i
@pi@n

=
@Di
@n

+
pi
"p

@2Di
@pi@n

� C 00
�
@Di
@pi

�2
: (23)

Di¤erentiating the elasticity of demand with respect to n, we obtain:

@"p
@n

= � "p
Di

�
@Di
@n

+
pi
"p

@2Di
@pi@n

�
:

Hence, we can rewrite (23) as

@2�i
@pi@n

= �Di
"p

@"p
@n

� C 00
�
@Di
@pi

�2
: (24)

Then, if (22) holds and (24)< 0 for all i 2 In, the symmetric equilibrium prices
fall in the number of �rms. We can notice that the conditions (22) and (24)
display a combination of demand and cost elements, a feature already noticed in
the Cournot model. For instance, if the marginal costs are not decreasing and
the demand elasticity is increasing in the number of �rms, then the conditions
are met.
Turning to our three examples of di¤erentiated products models referred to

the di¤erent approaches, we have derived directly the equilibrium prices and
observed that they fall in the number of �rms. It is easy to check that the
two consitions (22) and (24) are satis�ed in our examples. Indeed, we assumed
in the examples linear costs, i.e. C 00 = 0. Moreover, it can be easily veri�ed
that when the other n � 1 �rms set the same price p, the elasticity of demand
is increasing in n. Hence, the game features supermodularity and increasing
di¤erences and the prices fall in n.
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3.4 Collusive equilibria

We conclude our review of n-�rms oligopolies considering the case of collusive
equilibria. We refer to the in�nite horizon repeated game approach pioneered
by Friedman (1971) and further developed in Fudenberg and Maskin (1986).
Since we are considering symmetric oligopolies, we assume that the basic market
interaction can be represented in each period t = 1; ::; T by a symmetric and
stationary constituent game �t = fIn; ati 2 A; �ti = �(at)g, where In is the set
of n �rms, at = (ati;a

t
�i) is the vector of actions chosen by �rm i and the other

n�1 �rms at time t, A is the set of feasible actions and �ti = �(at) the per-period
payo¤. We further assume that �t has a unique symmetric Nash equilibriumba = (ba; ::;ba) that is Pareto dominated by other market con�gurations An� =�
(a�i ;a

�
�i) 2 An

���(a�i ;a��i) � �(ba) 8i 2 In	. Let a� be the maximal collusive
symmetric con�guration. The �rms maximize the discounted sum of pro�ts

V0 =
TP
t=0
�t�ti, where � = 1=(1 + r) is the discount factor. Each �rm observes

the other �rms�actions with a one period lag. The set of observed actions at
time t, the history of the game, then, is Ht =

�
a0; ::;at�1

	
.

In what follows we concentrate on symmetric collusive equilibria, in the spirit
of the overall section. Let aC be �rm i�s collusive action, aC 2 An� be the vector
of collusive actions, and �C = �(aC) the corresponding pro�ts. Notice17 that
aC 2 [a�; ba], that is the collusive symmetric allocation is in between the Nash
equilibrium and the maximal collusive allocation. Further, de�ne aP = ba �rm
i�s action during the punishment phase, corresponding to the symmetric Nash
equilibrium action in the constituent game, and �P = �(ba) the punishment
pro�ts. Finally, let aD = argmaxai �(ai;a

C
�i) be �rm i�s optimal deviation

when the other �rms stick on the collusive action, yielding �D = �(aD;aC�i).
Our previous discussion implies that �P � �C � �D with strict inequalities if
aC < ba. We focus on closed loop grim-trigger strategies:

��i =

8<:
ati = a

C for t = 0
ati = a

C for t > 0 and Ht =
�
aC ; ::;aC

	
ati = a

P for t > 0 and Ht 6=
�
aC ; ::;aC

	
When T = 1 (in�nite horizon), given the strategy followed by the other �rms
and the stationarity of the repeated game each �rm chooses to collude if the
following incentive compatibility constraint holds:

V C =
�C

1� � � V
D = �D +

�

1� � �
P :

Then, a well know result (Folk theorem) states that any allocation a� 2 An�
can be implemented as a subgame perfect equilibrium in the game repeated

17We implicitly assume in this notation that ba > a�, as it is the case if the action correspond
to an output level. If, instead, the action corresponds to a price, the boundaries of the interval
should be inverted.
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inde�nitely (T =1) if the following condition holds18 for all �rms i 2 In:

� � �� = �D � �C
�D � �P . (25)

We can now address the key issue, whether the price(s), quantities and pro�ts
change, and in which direction, when the number of �rms increases. To answer
these questions we can consider two examples of market interaction when �rms
o¤er homogeneous products, characterizing the constituent game �t as a price
setting Bertrand game or a quantity setting Cournot game. Let �C = n�C

be the total pro�ts of the cartel. Then, in a Bertrand setting �C = �C=n,
�D = �C and �P = 0. Then, the condition (25) boils down to

� � ��(n) = n� 1
n

that is increasing in n. In other words, if the basic market interaction takes
the form of Bertrand competition with homogeneous products, the incentive
compatibility constraint becomes tighter the larger the number of �rms. The
economic intuition is pretty simple: a cartel with more members distributes
the overall pro�ts �C among a larger number of participants, making the in-
dividual pro�ts falling. Deviation and punishment pro�ts, in this setting, are
instead una¤ected by the number of cartel members, making the condition for
cartel sustainability harder to meet. We can further observe that the incentive
compatibility constraint does not depend on the speci�c (symmetric) collusive
allocation aC the cartelists agree upon, since the gains from deviations are al-
ways proportional to the collusive pro�ts. Then, a focal outcome would be to
mimic the monopoly price pm. Our prediction, then, is that the market price
will be pm if the number of �rms is n � 1

1�� , falling to the Nash equilibrium
price p = c thereafter. To sum up, individual pro�ts are strictly decreasing and
the market price is weakly decreasing in the number of �rms.
Turning to the Cournot model, we can indentify a further element in the

comparative statics. Indeed, in a Cournot setting the pro�ts in the di¤erent
states vary non proportionally in the collusive allocation QC the �rms choose
to implement. More precisely, the incentive compatibility constraint becomes
tighter when the �rms coordinate on an allocation, summarized by total output
QC , that is closer to the monopoly output Qm. Hence, in a Cournot setting
the critical discount factor ��(QC ; n) is decreasing in the collusive output QC ,
whereas it continues to be increasing in the number of �rms n.19 The most col-
lusive sustainable output in a symmetric cartel, Q

C
, then, is (weakly) increasing

in the number of �rms: if we start from Q
C
= Qm, we can �nd a number of

�rms n(Qm; �) such that ��(Qm; n(Qm; �)) = �. For a larger number of �rms

18Notice that, having assumed symmetric �rm, the incentive compatibility constraint and
the threshold discount factors are the same for each and every �rm.
19For instance, it is easy to show that, in the linear Cournot model when �rms implement

the monopoly output the critical discount factor is �� = n2+2n+1
n2+6n+1

and is therefore increasing
in n.
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the cartel would collapse. However, the �rms can coordinate on a less collu-
sive output (i.e. Q

C
> Qm) such that the incentive compatibility constraint is

satis�ed. In general, when (25) holds as an equality, for given � we have

dQ
C

dn
= �

@��

@n
@��

@Q
C

� 0.

Hence, for n � n(Qm; �) the individual pro�ts are decreasing in n while the
market price is pm, whereas for n > n(Qm; �) both the individual pro�ts and
the market price are falling in n.
Finally, an informal argument that is often set out refers to the impact of

a larger and larger cartel on the monitoring activity that the �rms have to
perform to prevent cheating. It seems realistic that such activity may take
more time the higher the numer of �rms to be scrutinized. We can include this
further argument considering that the length of the period in the repetead game
framework may increase when more �rms participate in the agreement and have
to be monitored. A longer period, then, corresponds to a lower discount factor
�, leading to a decreasing relationship �(n). In this latter case, the incentive

compatibility constraint would become ��(Q
C
; n) � �(n) and the e¤ect of the

number of �rms on the maximal collusive allocation would be

dQ
C

dn
= �

@��

@n �
@�
@n

@��

@Q
C

� 0,

implying a stronger expansion in the cartel output when n increases. Finally,
when n!1 both �P and �C tend to zero and the only sustainable output Q

C

becomes the competitive one.
The e¤ect of market size S on collusive equilibria is twofold. Under constant

marginal costs, market size and the scale of production a¤ect multiplicatively
the pro�ts in each of the relevant states. Then, S cancels out in the expression
of the critical discount factor. In other words, under constant marginal costs
the incentive compatibility constraints are una¤ected by market size. On the
other hand, the level of collusive equilibrium pro�ts �C increase with market
size.
To sum up, even the cartel equilibria display comparative statics properties

similar to those already highlighted: the individual pro�ts decrease, as the mar-
ket price, when the number of �rms increases, and they tend to the perfectly
competitive output when n!1. Market size positively a¤ects collusive pro�ts
while being neutral on the conditions for sustainability of the cartel. Moreover,
the level of pro�ts in a cartel are higher, for a given number of �rms, than those
of the oligopoly equilibria analyzed in the previous sections.
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4 Free entry symmetric equilibria

We can now endogenize the entry decision that determines how many of the m
potential entrants will decide to become active, sinking the entry cost F . In a
symmetric setting, the post entry pro�ts depend on the number of active �rms
n and is decreasing in it, as analyzed in detail across a wide set of models in
the previous section. We can summarize the main �ndings in the relationship
�(n; S; 
) between the individual pro�ts, the number of �rms n, the market size
S and the variable 
 that captures the intensity of price competition. This latter,
therefore, can be referred to the degree of substitutability among di¤erentiated
products, as we did in Section 3.2, as well as on the mode of competition (price,
quantity, collusion). Hence, the individual pro�ts are decreasing in the number
of �rms, increasing in market size and decreasing in the intensity of competition.
The maximum number of �rms n� in a symmetric free entry equilibrium

(SFEE) is then captured by the two conditions:

�(n�; S; 
) � F (26)

�(n� + 1; S; 
) < F

The former ensures that all the active �rms make non negative net pro�ts,
whereas the latter implies that in a market equilibrium with n�+1 �rms each one
would not cover the sunk entry costs. Given the monotonicity of the individual
pro�ts in n we can therefore write20

n� = n(S; F; 
); (27)

where

@n�

@S
= �@�=@S

@�=@n
> 0, ,

@n�

@F
=

1

@�=@n
< 0 and n�(
0) < n�(
) if 
0 > 
.

(28)
Hence, our main predictions state that the number of �rms in a symmetric

free entry equilibrium is increasing in market size, decreasing in the sunk entry
costs (economies of scale) and decreasing in the intensity of competition.21 Inter-
estingly, relaxed competition (a lower 
), as it may arise if products are weakly
substitute, or in case the industry is cartelized, goes along with an increased
number of �rms. We can further notice that if marginal costs are constant,
market size increases multiplicatively the pro�ts and therefore the number of
�rms depends on the ratio F=S that captures the relevance of economies of scale
with respect to market size.

20We consider here for convenience n as de�ned on R+ ignoring the integer issue. Then,
given the monotonicity of pro�ts in n the two conditions for a SFEE boil down to �(n�; S; �) =
F .
21We express the relationship between n� and 
 to encompass both the case when 
 is

de�ned over a compact interval (the substitutability parameter in the di¤erentiated products
models) and when it is a discrete index measuring the intensity of competition (as when
comparing collusive and non-cooperative equilibria).
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The SFEE identi�es the maximum number of �rms sustainable given market
fundamentals and the prevailing strategic behavior. More speci�cally, in di¤er-
entiated products markets we have identi�ed the maximum number of varieties
sustainable in a SFEE, assuming that each variety requires to sink a cost F to
be produced, whereas the number of �rms may be lower if some of them o¤er a
portfolio of di¤erent varieties.22

5 Free entry and social e¢ ciency

Moving from the positive to the normative analysis, we are interested in eval-
uating whether the entry process leads to an optimal, excessive or insu¢ cient
number of �rms. A frequent presumption is that guaranteeing conditions of
free entry is desirable from a social point perspective. The analysis we have
developed in the previous sections allows to address this issue and to verify
whether and under which conditions free entry leads to socially desirable out-
comes. Spence (1976) and Dixit and Stiglitz (1977) have explored the issue in
a monopolist competition set-up, �nding that the number of varieties in a free
entry equilibrium falls short of the social optimum. In a homogeneous product
environment, instead, von Weizsäcker (1980) and Perry (1984) established an
opposite result, with too many �rms entering with respect to the social opti-
mum.
We discuss the social e¢ ciency of SFEE following Mankiw and Whinston

(1986) and Amir et al. (2014) and adopting the same two-stage game of the
previous sections. We analyze a second best welfare maximization problem
where the social planner is assumed to control the number of �rms but to be
unable to a¤ect or determine the behavior of the active �rms once they enter.
We start with the case of homogeneous products and quantity competition and
then move to a product di¤erentiation and price competition environment.
We can borrow from the analysis of symmetric market equilibria three con-

ditions that we proved to hold under fairly general conditions in the Cournot
model:23

1. In the symmetric equilibrium the individual output is decreasing in n:
q(n) > q(n0) for n0 > n;

22This statement should be further quali�ed according to the di¤erent models of product
di¤erentiation. In general, if in a symmetric multi-product setting each �rm o¤ers k varieties
some cross-variety e¤ects are internalized, and therefore the market price should be di¤erent
(higher) than in the case of single-product �rms. With higher individual pro�ts in the sym-
metric k-varieties �rms equilibrium some further entry should be pro�table. Therefore the
number of multiproduct �rm should be larger than n�=k, where n� is the SFEE number of
single-product �rms.
23 In their paper, Mankiw and Whinston do not model explicitly the post-entry game and

assume that certain features characterize the �rm and aggregate pattern of the equilibrium
strategies. We can, instead, explicitly refer to the properties of the equilibria developed in the
previous sections. A similar approach is in Amir, de Castro and Koutsougeras (2014).
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2. Total output is increasing in the number of �rms: Q(n) = nq(n) <
Q(n0) = n0q(n0) for n < n0;

3. The price cost margin is non negative for any number of �rms, and strictly
positive for a �nite number of �rms: P (Q(n)) � C 0 (q(n)) � 0 for all n
and P (Q(n))� C 0 (q(n)) > 0 for n �nite.

Given these features, the social planner maximizes total welfare by choosing
the number of �rms:

max
n
W (n) =

Q(n)Z
0

P (s)ds� nC (q(n))� nF (29)

Let us de�ne nW the solution. Then, under 1�3, the SFEE number of �rms
is higher than the social optimum, that is n� > nW . The result can be easily
proved by noting that the �rst order conditions in problem (29) are:

W 0(n) = P (:)

�
n
@q

@n
+ q(n)

�
� C(q)� nC 0(q) @q

@n
� F = (30)

= �(n)� F + n [P (Q(n))� C 0(q(n))] @q
@n
.

Since in SFEE �(n�) = F , @q@n < 0 by condition 1 and P (Q(n
�))�C 0(q(n�)) > 0

for n� �nite given condition 3, it follows thatW 0(n�) < 0 and therefore n� > nW .
The economic intuition of the excessive entry result is straightforward: when

an additional �rm enters, it adds to the social welfare the pro�t �(n)� F but,
at the same time, it steals output, and therefore pro�ts, from the other �rms,
the last term in the derivative (30), second line. The business stealing e¤ect,
captured by condition 1 above, creates a wedge between the private incentives
of the entrant, and the social e¤ect of entry, explaining why too many �rms
enter in a SFEE.24

The case of di¤erentiated products adds an additional e¤ect of entry on
welfare, since more �rms imply a larger set of varieties available to the con-
sumers. Following Spence (1976) we capture this e¤ect assuming that the gross
consumers bene�t is

CS(q) = G

"
nX
i=1

f(qi)

#
(31)

where q is the vector of outputs, f(0) = 0, f 0(:) > 0 and f 00(:) � 0 for all qi � 0
implies a preference for variety and G0(z) > 0, G00(z) < 0 for all z � 0 quali�es
products as substitutes25 . The social planner then solves the problem

max
n
W (n) = G [nq(n)]� nC(q(n))� nF:

24Mankiw and Whinston show that, when the integer problem is taken into account, n� �
nW � 1.
25Consumer�s utility maximization implies that in a symmetric equilibrium the price is equal

to G0 (nf(q)) f 0(q) and therefore the pro�ts can be written as � = G0 (nf(q)) f 0(q)q�C(q)�F .
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Contrary to the case of homogeneous products, when products are di¤eren-
tiated in general we cannot rank the number of �rms in a SFEE and the socially
optimal one. The reason is immediately evident from the �rst order conditions
of the problem:

W 0(n) = G0
�
nf 0

@q

@n
+ f

�
� C(q)� nC 0(q) @q

@n
� F = (32)

= �(n)� F + n (G0f 0 � C 0) @q
@n

+G0 (f � f 0q)

Condition (32) shows that an additional �rm adds to total welfare the pro�ts
generated �(n)�F , and further a¤ects total welfare with two additional terms.
The �rst one corresponds to the business stealing e¤ect already identi�ed in
the case of homogeneous products, and captures the fact that the new �rm
subtracts output and pro�ts to the competitors, with a lower net social gain
than the private one and a bias towards excessive entry.
The last term is new and refers to the impact of an additional variety on

consumers�surplus. G0f is the marginal social e¤ect of the new variety, whereas
G0f 0q is the �rm revenue. Since the �rm does not internalize all the social bene�t
of the additional variety, the private incentives are lower than the social ones,
leading to underprovision of varieties.
In this general setting the two con�icting terms do not allow to sign W 0(n�)

and evalutate whether an eccessive, insu¢ cient or optimal number of �rms enter
in a SFEE. Under more speci�c assumptions on the utility function, we can
generate examples where the ranking can be established. For instance, Dixit
and Stiglitz (1977) using a CES utility function obtain that the SFEE number
of �rms is short of the social one, reverting the case of excessive entry that
characterizes a homogenous product environment.

6 Free entry equilibria without symmetry

Although a symmetric environment is a natural reference when analyzing long
run free entry equilibria we may be interested in the e¤ects of free entry in
oligopoly markets when some kind of asymmetry has long lasting e¤ects. This
may come from the existence of patents or other frictions in the adoption of
process innovations that prevent the equalization of production techniques, from
persisting advantages on the demand side coming from quality or brand image,
as well as from institutional features that a¤ect the behavior of �rms, as for
instance the coexistence of di¤erent ownership structures or the presence of
state-owned �rms. Since free entry equilibria suggest the pattern of adjustment
when the entry process unfolds, asymmetric oligopolies are an interesting and
relevant case to be addressed.
Once �rms intrinsically di¤er, the number of �rms is no more a relevant

statistics to describe, in a positive or normative sense, the long run equilibria.
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However, many of the oligopoly models we have already considered in a sym-
metric setting share a particular property, that of being aggregative games, that
allows dealing easily with asymmetric environments.26

The pro�ts of �rm i in an aggregative oligopoly game can be written as a
function of a choice variable (action) ai and of the sum of the actions of all

market participants A =
nP
j=1

aj , that is �i(ai; A). A very simple illustration is

the Cournot model already considered in Section 3.1. Setting qi = ai we can
write �i(ai; A) = P (A)ai � Ci(ai). We recognize an aggregative structure also
in some of the models of product di¤erentiation27 . In the linear model from
Singh and Vives (1984), indeed, setting pi = ai the pro�ts write as:

�i(ai; A) = (ai � c)
�(1� 
) + 
A� [
(n� 1) + 1] ai

(1� 
) [
(n� 1) + 1]

Even the logit model shares the feature of an aggregative game, once we de�ne
ai = exp(�
pi): the pro�ts can be written as

�i(ai; A) = (� log(ai)=
 � ci)
ai
A
:

To illustrate the main features of aggregative games, we use here the linear
Cournot model �i(qi; Q) = (a � bQ � ci)qi as an example. The traditional
setting describes the pro�t function as depending on the own output and the
aggregate of the other �rms�production Q�i =

P
j 6=i qj , that is �i(qi; Q�i) =

(a� b(qi +Q�i)� ci)qi and identi�es the best reply

bqi(Q�i) = a� ci
2b

� Q�i
2
:

Alternatively, following the aggregative setting we can identify the inclusive best
reply �rst introduced by Selten (1970), where the optimal individual output is
consistent with a given aggregate level of production28 :

eqi(Q) = a� ci
2

�Q:

Notice that an equilibrium exists only if
nP
i=1

eqi(Q) = Q, that is if the sum of the

inclusive best replies has a �xed point.29 Further we can de�ne �rm i�s pro�ts,
26See on free entry equilibria with aggregative oligopoly games Anderson et al (2015).
27 It is immediate to notice that address models with n > 3, as the Salop circular road model

described above, are not aggregative games, since the pro�ts of each �rm depends only on a
subset of prices.
28 It is immediate to notice that both expressions come directly from the �rst order conditions

@�i

@qi
= a� ci � b(qi +Q�i)� bqi = 0:

29Anderson et al (2015) introduce a set of assumption that guarantee the existence and
uniqueness of an equilibrium in inclusive best replies. Moreover, under these assumptions
the nature of interaction (strategic substitutability or complementarity) of the original best
replies translates in an analogous feature of the inclusive best replies.
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when it and all �rms choose their inclusive best reply, as a function of total
output Q:

�i(Q; eqi(Q) = ��i (Q) = (a� ci � bQ)2
b

(33)

that is strictly decreasing in Q. The function (33) plays a fundamental role in
the analysis of free entry equilibria when asymmetries are admitted. Indeed, it
allows to map the total equilibrium output - in general the aggregate A - into
the pro�ts of the individual �rms, where therefore Q replaces the number of
�rms as the key driver of equilibrium pro�ts in an asymmetric setting.
Continuing with our Cournot example, a Free Entry Equilibrium (FEE) can

be de�ned as a set of quantities f(q�i )i2Ig and a set of entrants I � Im, where
Im is the set of all m potential entrants, such that

�i(Q
�
I) � Fi for all i 2 I (34)

�j(Q
�
I + q

�
j ) < Fj for all j =2 I

where Q�I =
P

i2I eqi(Q�I) is the aggregate output of the entrants I. Notice that
we are not imposing symmetry in gross pro�ts �i nor in the sunk costs Fi. As
a �nal step, it is often argued that the marginal entrant in a free entry equi-
librium gains zero pro�t, a condition that is shared by all �rms in a symmetric
equilibrium. Anderson et al (2015) assume that, among the potential entrants,
there is a subset e � Im of symmetric marginal �rms30 with identical pro�t
function �i = �e(qi; Q) and entry cost Fi = Fe for all i 2 e. Some of these
marginal �rms may be active, belonging to the set ea � I.
In a Zero Pro�t Free Entry Equilibrium (ZPFEE) a non empty set of mar-

ginal �rms ea is active and gains zero pro�t. More formally, a ZPFEE is a FEE
with a set I of active �rms such that ea � I and �i = ��i (Q�I) = Fi for all i 2 ea,
where ��i (:) is given by (33). The existence of a fringe of symmetric active mar-
ginal entrants allows to combine the zero pro�t condition of the marginal �rms
with a unique level of aggregate output Q�I and with a variety of pro�t levels of
the inframarginal (asymmetric) �rms. Indeed, since ��i (Q) is decreasing in Q,
from the zero pro�t condition for the active marginal �rms we obtain Q�I , and
this latter determines the pro�ts of the other inframarginal �rms ��i (Q

�
I). The

number of active marginal �rms ea is then adjusted through the entry process
to �nd the ZPFEE.
To illustrate these properties it is interesting to analyze how the ZPFEE

varies when exogenous changes in the set of inframarginal �rms occur, modifying
their pro�t structure and, consequently, the optimal output they deliver to
the market. Let us consider an exogenous shock that a¤ects a subset IC of
inframarginal �rms (the changed �rms), as for instance a process innovation, or
a merger, or a privatization, while leaving the other inframarginal �rms in subset
IU (the unchanged �rms) una¤ected. Hence, in the initial state, I = IC[IU[ea.
30A possible justi�cation of this key assumption rests on the following argument. The

industry is populated by a set of larger �rms, that display rich strategies and, through them,
are able to introduce some competitive advantage, i.e. asymmetry. Then, there is a fringe
of small �rms (the marginal entrants) that are not strategically sophisticated and adopt a
standard and similar technology and are therefore less e¢ cient that the larger ones.
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Then, after the shock the set of active �rms in a ZPFEE moves from I to I 0.
All the changed and unchanged inframarginal �rms remain active both before
and after the shock, i.e. IC = I 0C and IU = I 0U . The adjustment to the new
ZPFEE works through a variation in the set of active marginal entrant: ea 6= e0a.
Since e0a 6= ; in the new equilibrium, �i = ��e(Q�I0) = Fe must hold for i 2 e0a and
therefore total output remains the same, that is Q�I0 = Q

�
I . Consequently, the

pro�ts of the unchanged inframarginal �rms do not vary. Hence, for instance,
a reduction in the marginal cost of the changed inframarginal �rms IC leads
them to produce more in the new ZPFEE whereas the unchanged inframarginal
�rms IU maintain the same level of production. Since total ouput does not vary,
the set of marginal �rms shrinks as it does their overall production, adjusting
the larger production of the changed inframarginal �rms and maintaining total
output Q�I at the initial level.
This property of the ZPFEE encompasses also the case of the "aggressive

leaders" in Etro (2006) where one �rm, the leader, is the inframarginal agent
and the other symmetric �rms, the followers, belong to the active marginal
entrant group ea. A change in the pro�ts of the leader, for instance due to some
investment, as Etro (2006) writes, "does not a¤ect the equilibrium strategies
of the other �rms, but it reduces their equilibrium number". Interestingly, in
this setting with an endogenous number of followers, if the investment increases
the marginal pro�t of the leader, this latter has an incentive to overinvest, no
matter whether competition is in strategic complements or substitutes. Indeed,
if the market equilibrium output does not change with its investment whereas
its market share and pro�ts increase, the leader will overinvest. In the limit, if
the investment is not costly, the leader has the incentive to produce more than
the usual Stackelberg leader�s output and to monopolize the market preventing
the entry of the followers.
This result of generalized over-investment is strikingly di¤erent from what

happens when the number of followers (entrants) is given and exogenous. In
the taxonomy proposed by Fudenberg and Tirole (1984), when the investment
increases the marginal pro�t, the leader over-invests (top dog) if competition is
in strategic substitutes but it under-invests (puppy dog) when it competes in
strategic complements.
Aggregative games greatly simplify also the normative analysis of asymmet-

ric environments. Starting with the case of homogeneous products, we observe
that consumers�surplus depends on aggregate output only,31 i.e. CS = CS(Q),
with CS(0) = 0, CS0(:) > 0 and CS00(:) � 0 for all Q � 0. Then, when a
shock a¤ects a subset of inframarginal �rms while leaving unchanged total out-
put Q�I , consumers�surplus does not vary as well. The only impact on social
welfare comes from the variation in pro�ts of the changed inframarginal �rms
IC . Indeed, the pro�ts of the unchanged inframarginal �rms IU do not vary
and the change in the number of active marginal �rms from ea to e0a does not

31This is true if the �rms�activity does not entail any externality, as for instance di¤erent
levels of pollution. If this were the case, the composition, and not only the total level of
output would matter from a welfare point of view. In our discussion we are assuming that
these composition e¤ects do not arise in a homogeneous product market.
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a¤ect welfare, since they gain zero pro�ts. We conclude that if a shock induces
a pro�table adjustment in a subset of �rms and a shift in output composition,
total welfare increases of the same amount of the pro�ts of the a¤ected �rms,
quite in constrast with the impact in the short run when the number of �rms
does not vary.
To appreciate the result, let us consider the welfare impact of a merger be-

tween two �rms absent any e¢ ciency gain. The short run e¤ects are well known
in the IO literature: the merged entity internalizes the negative externalities and
contracts output, the outsiders react by expanding their production. The net
e¤ect is a fall in total output, consumers�surplus and total welfare, an increase
in outsiders�pro�ts and, in case of constant returns to scale, a fall in insiders�
pro�ts.32

Once we consider entry and ZPFEE, however, the e¤ects change signi�cantly.
Since additional active marginal �rms enter in reaction to the short run adjust-
ments, total output, consumers�surplus and outsiders�pro�ts (IU and ea) do not
change. The insiders�(IC) pro�ts, due to their output contraction, are weakly
lower. If, however, the merger allows to realize e¢ ciencies, insiders�pro�ts, as
well as their incentive to merge, increase, as it does total welfare. This result
brings in a strong policy implication in favor of lifting ex-ante merger control
and authorization policies. Indeed, since the long-run private and social e¤ects
of a merger coincide, if private �rms have an incentive to merge, then social wel-
fare will raise, whereas socially damaging mergers would never be implemented
given the lack of private incentives.33

In the welfare analysis of homogeneous product markets, we assumed that
consumers�surplus depends only on total output but not on its allocation among
the active �rms. Moving to a di¤erentiated products environment a similar
assumption may be more problematic. Indeed, Anderson et al (2015) show that
in aggregative oligopoly games with di¤erentiated products a riallocation of a
given aggregate among the di¤erent varieties, although neutral on the ZPFEE
conditions, may a¤ect total surplus and welfare. In other words, it may be
that consumers�surplus does not depend only on the aggregate, but also on its
composition.
They show that the dependence of consumers�surplus on the aggregate only

still persists with di¤erentiated products if the demand functions satisfy the
Indipendence of Irrelevante Alternatives (IIA) property, that is if the ratio of any
two demands depends only on their own prices and not on the prices of other,
unconsidered, alternatives. Notably, the logit model, as well as the demand
functions derived from the CES utility function, satisfy the IIA and therefore
the corresponding oligopoly game not only is aggregative, but allows to express

32See Salant et al. (1983).
33Notice that the hands-o¤ policy implications of free entry on merger control are much

stronger than the usual argument that low entry barriers may constitute a favourable element
when analyzing a merger. In this latter case easy entry conditions may constitute a pros to
be balanced with the cons of enhanced market power in the evaluation of a merger. In the
ZPFEE case, free entry is instead su¢ cient to generate mergers only when they are welfare
enhancing.
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consumers�surplus as a function of the sum of the prices only.34

7 Endogenous sunk costs and persistent concen-
tration

The entry decision in the previous sections involved sinking a �xed set-up cost
F that was related to some initial indivisible investment. We have not further
speci�ed the nature of these outlays. Assuming that the level of the sunk cost
F is an exogenous parameter with respect to the entry and market strategies
may be explained referring to technology (e.g. investment in a minimum ef-
�cient scale plant) or institutions (e.g. the payment of a licence fee needed
to operate). The sunk cost may vary, allowing us to estrapolate comparative
statics properties, but for reasons orthogonal to the market strategies adopted
by the active �rms once entered. In this sense we can label the environments
considered so far as characterized by exogenous sunk costs.
In this setting, the amplitude of the sunk costs F compared to the size of

the market S was a fundamental driver in determining the maximum number of
�rms sustainable in a free entry equilibrium. The limiting case, when F becomes
negligible with respect to S, leads to convergence to a competitive equilibrium
with an in�nite number of �rms, vanishing externalities and price converging to
the marginal cost.
Although this paradigm can apply to several industries, there are many

other sectors where a relevant part of the sunk costs arise due to speci�c market
strategies of the �rms, that in general we may connect to the e¤ort of reaching
a competitive advantage and market leadership. This is the case with invest-
ments in advertising, that enhance the perceived quality of the product, or with
R&D expenditures aimed at improving the e¢ ciency of the technology or the
quality of the products.35 Similar e¤ects take place in industries, as media and
entertainment, where market leadership can be reached by securing speci�c,
non reproducible inputs as, for instance, talent and premium contents.36 In
all these examples, a competitive advantage is reached through enhanced ef-
forts and, therefore, higher sunk costs. We label this second class of economic
environments as endogenous sunk costs.
When sunk costs react to market incentives, we may expect that the entry

process, that is constrained by the need to repay all the sunk outlays, is a¤ected.
Indeed, market size, that drives the tendency to fragmentation in an exogenous

34 It should be stressed that aggregative product di¤erentiation models not necessarely sat-
isfy the IIA, as it is evident, for instance, considering the linear model drawn from Singh and
Vives (1984). In this case consumers� surplus depends not only on the aggregate price but
also on its composition.
35A pathbreaking contribution in the theory and empirical analysis of these industries is

due to Sutton (1991) and (1998) books, the former referred to advertising intensive industries
and the latter to R&D intensive sectors. See also Sutton (2007) for a comprehensive review.
36See on these examples Motta and Polo (1997) and (2003).
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sunk cost industry, has the additional e¤ect of increasing the marginal return to
market leadership, pushing up e¤orts for leadership and endogenous sunk costs.
A central result of the endogenous sunk cost case claims that, if the incentives
to high e¤ort are su¢ ciently high, an increase in market size does not lead to a
more and more fragmented market structure. There exists an upper bound to
fragmentation such that, even in the limit, large �rms and concentration persist.
We illustrate this result through a very simple model due to Schmalensee

(1992)37 that conveys the main ideas and intuition. In this setting we set the
price p > c �xed and concentrate on the investment in advertising Ai. The
demand for product i has a structure similar to the one in discrete choice models:
Di(Ai; A�i) = S � Pi(Ai; A�i) where S is market size and Pi �rm i�s market
share. Moreover,

Pi(Ai; A�i) =
A
i
nP
j=1

A
j

(35)

where 
 2 [0; 2] is a parameter that measures the mobility of consumers in
reaction to advertising outlays. Notice that @Di

@Ai
= 


Ai
Pi � (1� Pi).

The pro�t function of �rm i, then, is

�i(Ai; A�i) = (p� c)S
A
i
nP
j=1

A
j

�Ai � F (36)

where the last two terms refer to endogenous sunk costs in advertising (Ai) and
exogenous sunk entry costs (F ). In this setting there exists a symmetric Nash
equilibrium in advertising levels

A� = (p� c)S
 n� 1
n2

(37)

that is increasing in market size S and in consumers�reactivity to advertising

.
Plugging into the pro�t function and taking into account that in a symmetric

equilibrium Pi = 1=n, the zero pro�t condition can be rewritten as:

1� 

n�

+



n�2
� F

S(p� c) = 0; (38)

where n� is a solution of the above equation, that is the SFEE number of �rms.
The last term is referred to exogenous sunk costs F and vanishes as the size

of the market S increases inde�nitely. However, the �rst two terms, that are
directly related to the endogenous sunk costs in advertising outlays, present a
di¤erent pattern: they do not depend on market size38 .

37A full �etched model based on quantity competition and investments in quality can be
found in Sutton (1991) and (2007, Appendix B).
38This feature, literally speaking, depends on the speci�c set up of the very simple model we
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When 
 � 1, corresponding to consumers poorly reacting to advertising, and
therefore a weak competitive pressure for market leadership, the single positive
solution n� of (38) increases inde�nitely in market size S, reproducing a pattern
we already observed in pure exogenous sunk cost models. However, for 
 2 (1; 2]
the incentives to invest in market leadership bite and advertising increases in
larger markets, pushing up the endogenous sunk costs. In this latter case

lim
S!1

n� =




 � 1 :

The entry process in this case is predominantly governed by the endogenous
sunk costs, an the number of �rms sustainable is bounded above for any market
size, implying persistent concentration.39 Moreover, the endogenous sunk costs
tend to raise more quickly when consumers are more responsive to advertising,
increasing concentration. Interestingly, in exogenous sunk costs environments
more intense competition is associated with a lower n� and a more concentrated
market, although these features dilute and vanish when the market size increases
inde�nitely. This patter of a higher concentration when competition is harsher,
instead, persists in endogenous sunk cost industries even with growing market
size.

8 Frictionless entry and contestability

The general result in the endogenous and exogenous sunk costs cases claims that
there exists a maximum number of �rms sustainable in a free entry equilibrium,
and that it is decreasing in the amplitude of the sunk costs F compared with
market size S. A concentrated market, in turn, is associated with non compet-
itive mark-ups and allocative ine¢ ciency. In the limit, when the economies of
scale are particularly relevant, then, we might �nd that only one �rm can oper-
ate in the market, a case of natural monopoly. The �rm will set the monopoly
price pm, being able to cover the high �xed costs with the monopoly margins.
A second, symmetric entrant, pushing down with its additional output the mar-
ket price to p(2) = P (Q(2)), would make losses since by de�nition in a natural
monopoly it would be unable to cover the �xed costs. Then, there is a range of
�xed costs such that the monopoly price is charged and no entry occurs. Similar

adopt. However, a general property of this class of models is that when market size increases
inde�nitely, gross pro�ts and investment costs once we reach a certain number of �rms tend
to increase at the same rate. In this case, when S increases, boosting the gross pro�ts, the
incentives to invest in market leadership increase accordingly and the endogenous sunk costs
increases at the same rate, preventing entry of additional �rms.
39Shaked and Sutton (1983) identify a second case when the number of �rms does not

increase when market size raises. When �rms o¤er di¤erent qualities xi 2 [x; x] and the
burden of quality improvements falls on �xed rather than marginal costs, price competition
squeezes the margins. With relatively similar prices the demand for lower quality products
vanishes and a limited number of �rms survives (Finiteness property).
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cases can be generated where a small number of �rms can be sustained in a free
entry equilibrium.
The contestable markets approach40 challenges this view, arguing that when

entry is frictionless, structural monopoly or oligopoly environments do not lead
to monopoly or oligopoly pricing and the associated allocative distortions. In-
deed, potential competition may exert a su¢ cient corrective e¤ect on the in-
cumbent, inducing it to set a (second best) e¢ cient price to prevent temporary
(hit and run) entry. Allocative e¢ ciency is therefore ensured by (potential)
competition even when economies of scale are so relevant to prevent actual
competition.
This striking result re-establishes in a free entry environment a central fea-

ture of the Bertrand result, that claims no relationship exists between the num-
ber n > 1 of active �rms and the (socially e¢ cient) oligopoly equilibrium.
Indeed, as the exogenous sunk cost paradigm extends to the free entry case the
Cournotian result, the contestable market approach brings on the stage of the
free entry story a Bertrand-type �avour.
It is now time to specify more in detail what, in a symmetric setting, we

mean by frictionless entry. As a general point, the incumbent �rm and the
(potential) entrant are, under any respect, perfectly identical.
Since we are considering a natural monopoly, the �rst issue to address is

the nature and amplitude of the �xed costs. Let us consider the following
example. On the supply side, suppose that, in order to operate in the industry,
it is necessary to bear a total investment F for an indivisible capital good that
provides production services over a time horizon T . Let us divide this total
time in t periods, whose length we are going to specify below. The incumbent
�rm I, then, has to cover a fraction f = F=t of the �xed costs in each of the t
periods it is active in the market, and has variable costs CI(qI). Let us consider
the case f 2 (�2;�m], where �2 are the gross pro�ts from duopoly and �m the
monopoly gross pro�ts. Under this assumption the number of �rms sustainable
in the market is n� = 1, that is the market is a natural monopoly.
The potential entrant E, if it is willing to enter, has to pay F = t � f to

purchase the capital good. If, after one period, E decides to exit, the residual
value of the capital good is (t�1)�f . Let � 2 [0; 1] be the fraction of the residual
value that can be cashed back by reselling the capital good or by using it in
other markets. This parameter measures the sunkness of the initial investment,
with � = 1 corresponding to the case when the capital good can be e¢ ciently
recovered after exit and � < 1 to some level of sunkness. If E enters and
produces, its costs are CE(qE). It is evident that, since the incumbent can
e¢ ciently use the capital good in the market for the entire length of its economic
life, the entrant is in a symmetric position on the supply side only if � = 1 and
CE(q) = CI(q).

40See Baumol et al. (1982). To ease the exposition we present here the case of a contestable
natural monopoly. The authors generalize to natural oligopolies the contestable market ap-
proach showing that second best e¢ cient allocations arise also in these cases when entry
is frictionless. The case of multiproduct �rms and economies of scope is a third, relevant
extension of the analysis.
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Turning to demand, for a given price p the entrant�s demand is DE(p) �
DI(p) where the equal sign corresponds to a symmetric position towards the
customers, that are uncommitted and can switch to the entrant if the price pE
is more attractive than the incumbent�s one pI .
The timing of the game is as follows: at s = 0 the incumbent sets a price pI

that cannot be changed for a period of length T=t; just after pI is set the entrant
posts its own price pE ; once the two prices are set, the customers choose which
of the two �rms to patronize and are supplied immediately; at s = T=t, before
the incumbent changes its price, the entrant exits and resells (or re-uses) the
capital good collecting �(t� 1)f .
Once unbundled the contestable market story, some key ingredients become

evident.

1. There is no administrative restriction on entry, as licences or authoriza-
tions;

2. Demand and supply quantities adjust instantaneously while price changes
take time.

In this environment, the incumbent sets a (limit) price that prevents the
temporary entry of the competitor:

bpI = CE (DE(bpI)) + f [�+ t(1� �)]
DE(bpI) : (39)

If we compare (39) with the second best Ramsey price

psb =
C
�
D(psb)

�
+ f

D(psb)

we can immediately notice that the limit price set by the incumbent is second
best e¢ cient if three further conditions hold:

3. The entrant has access to the same technology as the incumbent, with no
restrictions coming from patents or privately owned know how: CE(q) =
CI(q); moreover, it can instantaneously change the level of production at
the desired level;

4. The customers look at the entrant and the incumbent as o¤ering perfect
substitutes and have no restriction or costs in switching from one to the
other: DE(p) = DI(p);

5. The �xed indivible investment is not sunk and the entrant recovers entirely
the residual value of the capital good: � = 1.

Under assumptions 1 � 5 potential competition is able to discipline the in-
cumbent and induces second best e¢ cient outcomes in markets plagued by sub-
stantial economies of scale and concentration. Intuitively, perfect symmetry of
the incumbent and the entrant and frictionless entry allows the market to be
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supplied, indi¤erently, by either of the two �rms. If the incumbent commits to
a pro�table price, it is temporarely replaced by the entrant through undercut-
ting. In this case, the identity of the provider changes for a period, although the
market remains a monopoly. To avoid undercutting, the incumbent is forced to
adopt the e¢ cient limit price equal to the average costs. This remarkable result
is derived under a set of speci�c assumptions, and can be evaluated both with
respect to its empirical relevance and theoretical robustness. On the theoretical
ground, the limit price expression (39) clearly shows that substantial depar-
tures from the second best e¢ cient price occur when any of the assumptions is
weakened.
Turning to the empirical relevance, the contestable market approach has in-

spired the liberalization of the airline industry in the US in the late Seventies.41

In this sector a market corresponds to a route, and therefore the large invest-
ments in aircrafts are not speci�c to a market: the aircrafts can be moved to
other routes or resold in an e¢ cient market. Alternatively, the carriers can lease
the aircrafts The other �xed costs, check-in and handling services, are speci�c to
airports, and therefore to the routes served. In the market reform the airports,
rather than the carriers, supplied these services, leasing them to the carriers on
a variable cost basis. Hence, assumption 5 of no sunkness seems consistent with
the empirical data, as well as the access to the same technology (Assumption
3). Price stickiness may derive from contractual constraints on fares posted in
advance (Assumption 2), and lifting authorizations was a key measure of the
reform (Assumption 1). However, Assumption 4 was the Achilles�heels of the
reform, since slots were assigned under grandfather�s right, and the peak-hours
more pro�table ones remained in the portfolio of the incumbents. Moreover, in
the years after the reform the carriers reorganized the routes from a spoke-to-
spoke to a hub-and-spoke pattern, enhancing their dominant role on large hubs
and achieving high load factors. With DE(p) < DI(p), after an initial phase of
turbolence, the incumbents were able to pro�tably prevent entries and maintain
dominance on their key hubs.
Hence, although intellectually brilliant, the contestable market approach

hardly can be considered a general theory of free market equilibria due to its
lack of robustness. Although potential competition is an important ingredient
in entry games, its impact on the behavior of active �rms has to be carefully
evaluated from an empirical point of view.

9 Conclusions

In this Chapter we have reviewed the di¤erent branches of the IO literature
that analyzes free entry equilibria and the endogenous determination of market
structure. A recurrent theme refers to the assumption of symmetric �rms, that

41See Bailey and Panzar (1981) and Fawcett and Farris (1989).
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in a long run perspective can be justi�ed when the friction to access to tech-
nology and the features of demand allow all �rms to refer to a common set of
best practice techniques and to exploit the possibility of (horizontal) product
di¤erentiation. In this perspective, a very rich class of oligopoly models is char-
acterized by signi�cantly similar comparative statics properties of the market
prices, quantities and pro�ts when the number of active �rms increases. Two
limiting cases emerge, the perfectly competitive and the monopolistic competi-
tive outcomes, when the number of �rms increases inde�nitely. The monotone
comparative statics tools allow identifying the general conditions behind these
results. Long run market structures under free entry are determined by a small
set of elements referred to technology (economies of scale) and preferences (mar-
ket size), with an additional ingredient related to strategies and the intensity of
price competition. Hence, the general result of free entry enquilibria provides a
solid theoretical foundation to the traditional approach of Industrial Economics
based on the Structure-Conduct-Performance paradigm.
The normative properties of free entry equilibria show that in a homogeneous

product setting the business stealing e¤ect is the key element that creates a
wedge between the private incentives and the social planner, determining an
excessive number of �rms. When product di¤erentiation is introduced, however,
an opposite externality leading to underprovision of varieties comes in, since the
private incentives to enter do not include the bene�ts of an increased number
of substitute products on consumers.
While symmetric market games are a useful reference for the long run evo-

lution of markets, asymmetric settings may be relevant both in the long run,
when frictions persist, and as a starting point to study the evolution of market
structure under free entry. It is relevant to notice that some form of symmetry is
maintained also in this framework, that exploits the aggregative nature of many
oligopoly models, by assuming that the (relatively ine¢ cient) marginal entrants
are all alike. The zero pro�t condition on the marginal entrants, together with
the aggregative nature of the market games, then generates unconventional long
run e¤ects when a shock hits the active �rms. Indeed, in the new free entry
equilibria the total output remains unchanged, while its composition varies, with
the change in output of the �rms a¤ected by the shock absorbed by an opposite
variation in the number of marginal entrants. A hands-o¤ policy implication
comes together with these results.
Endogenous sunk costs related to market strategies provide a di¤erent pat-

tern of adjustment characterized by persistent concentration even in very large
markets, in contrast with the tendency to fragmentation when sunk costs are
exogenous. Finally, we review the attempt to establish e¢ cient entry equilibria
even in markets characterized by huge economies of scale and structural concen-
tration, including natural monopolies, by assuming frictionless entry and giving
a role to potential competition. The contestable markets paradigm refreshes in
a free entry set-up the features of Bertrand competition, in contrast with the
Cournotian paradigm of the exogenous sunk costs approach. Once again, sym-
metry plays a role, since the e¤ectiveness of potential competition in disciplining
dominant �rms rests on the assumption that the entrants can perfectly replace
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the incumbent during their temporary raid in the market.
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