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Biofuels and Food Prices: Searching for the Causal Link 
 

1. Introduction 

In recent years agricultural commodities have been a source of concern because of the 

tendency of prices to increase and become more volatile. The popular press and reports from 

international and non-government organizations have been voicing the responsibility of the 

significant expansion of biofuel production in causing increases of food prices, thus putting at 

serious risk the plight of millions of poor.1 This has sparked the “Food versus Fuel” debate. 

According to the underlying view, the introduction of biofuels has strengthened the linkages 

between fuel and agricultural markets. In particular, because of the very rapid expansion of 

U.S.-produced ethanol whose main input is corn, the increased conversion of maize to 

ethanol reduced the supplies of food and increased food prices. 

Over the last ten years the world biofuel production has increased dramatically.2  Many 

developed countries are highly dependent on oil imported from politically sensitive regions. 

In addition, oil is today the most important energy source for transportation, a sector in 

continuous expansion throughout the world. Among the short-medium term strategies to 

reduce a country energy dependence from abroad are changes in the fuel mix of the road 

transport sector, mostly by increasing the use of biofuels. Indeed, between 2000 and 2010 

ethanol output went up from 17 to 86 billion liters, while biodiesel grew from 0.8 to 19 

billion liters. Today biofuels provide 2.7% of all global fuel for road transportation, up from 

2% in 2009. 

Since the aftermath of the first oil crisis in the early 1970s U.S. policy has aimed to establish 

and expand a domestic ethanol fuel industry. The United States and Brazil are the two largest 

producers of ethanol: in 2010, the United States generated 49 billion liters, or 57% of global 

output, and Brazil produced 28 billion liters, or 33% of the total. While sugarcane is the 

dominant source of ethanol in Brazil, corn is the primary feedstock for U.S. ethanol. Today’s 

ethanol production is made with about 40% of all America’s field corn, up from 12% in 

2004-2005. The U.S. harvests around two fifths of world’s corn and accounts for 60% of the 

maize exported globally. Apart from providing feed for cattle, pigs and chickens, and having 
                                                 
1  As an example, Fidel Castro claimed that George W. Bush's support for the use of food crops in fuel 
production would cause three billion deaths from hunger, according to a BBC report  of March 29, 2007 
(http://news.bbc.co.uk/2/hi/americas/6505881.stm). See also “As high as an elephant’s eye”, The Economist 
October 16th, 2010.  
2 Sorda et al. (2010) provide an overview of policies across the world. An account of the developments in the 
U.S. ethanol industry and of national policies is provided in Solomon at al. (2007) and Zhang at al. (2007). 
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dozens of industrial uses, flour from corn is a staple for millions of poor people.3 Because in 

the U.S. most ethanol is made from corn, the observed growth in the production of such 

biofuel allegedly accounts for a large portion of the growth in the demand for corn. 

According to the latest report of the National Corn Growers Association (NCGA), more than 

3400 million bushels of corn, equivalent to 27.3% of U.S. consumption, were used to produce 

ethanol in 2011; if compared to the figure for 1986, 290 million bushels, this implies an 

average annual growth rate over 3.6% (NCGA, 2012). Given that one bushel of corn allows 

to produce 2.8 gallons of ethanol, it follows that the U.S. ethanol production from corn has 

increased from 812 million gallons in 1986 to 9520 million gallons in 2011. 

Ethanol was introduced in the early 80’s as a transportation fuel to be blended with gasoline 

to increase its octane level. Later its role shifted to become an “oxygenate” to help gasoline to 

burn more efficiently. Lastly, ethanol was appreciated for its sustainability implications, been 

part of the renewable energy family and helping to reduce the energy dependence of a 

country. Blended into over 90% of motor gasoline, it is estimated that in 2011 U.S. ethanol 

will eliminate the need for over 212 million barrels of imported oil worth around 21 billion 

dollars.4 

The great expansion of U.S. ethanol production has been largely policy-driven.5 The U.S. 

ethanol industry has benefitted from preferential treatment from federal and state 

governments ever since the Energy Tax Act of 1978 which exempted 10% ethanol/gasoline 

blend (gasohol) from the federal excise tax. This decision was combined with a 54 

cents/gallon ethanol import tariff introduced to provide incentives for the establishment and 

development of a U.S. biofuel industry. Various states, mainly the corn-producing Midwest, 

subsequently enacted additional ethanol fuel tax credits to further promote the industry. 

While tax credits and subsidies played only a modest role, the industry became a major 

                                                 
3 It is estimated that out of the 45,000 products on sale in an American supermarket more than one fourth 
contains corn. 
4  “Global ethanol production to reach 23 billion gallons in 2011”, retrieved from:  
http://ethanolproducer.com/articles/7482/global-ethanol-production-to-reach-23-billion-gallons-in-2011. 
5 Also in Europe biofuels development has been supported by legislation since the beginning of the century. The 
first European bill was the 2003 Biofuels Directive which, for the first time, established non-binding targets for 
renewable fuels in transport (2% by 2005 and 5.75% by 2010). In 2009 the Biofuels Directive was replaced by 
the Renewable Energies Directive (RED) which extended and increased, and also made mandatory, the 
proportion of renewable fuels on overall transport fuel to 10% by 2020. The European biodiesel market is much 
larger than the bioethanol one: in 2011, the  former accounted for about 70% of the biofuels industry while the 
latter had only a 28% market share. The first reason behind these figures is that the European diesel 
consumption in the transport sector is considerably higher than gasoline. Secondly, the European local supply of 
feedstock for biodiesel such as rapeseed is larger than the one for bioethanol (grains and sugar beet), the 
opposite being true for the US. 
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supplier of fuel additives to the country especially following state bans on Methyl Tertiary 

Butyl Ether (MTBE) found to contaminate both ground and surface waters. This, in turn, 

involved a substantial improvement in the economic outlook for rural America. 

The gasoline used in American cars nowadays contains up to 10% ethanol (E10), but in the 

Mid-West, where many of the bio-refineries are located, a blend containing 85% ethanol 

(E85) is also on sale for so-called “flex-fuel” vehicles. In addition, the Environmental 

Protection Agency has approved a blend with 15% ethanol (E15) for use in ordinary vehicles 

built from 2001 onwards. At the root of this is the Energy Policy Act of 2005 which 

established a mandate known as the Renewable Fuel Standard (RFS). Pushed by the farm 

lobby, the RFS program originally required that 28 billion liters of renewable fuel be blended 

annually into gasoline by 2012 to help reduce greenhouse-gas emissions and cut oil imports. 

In 2007 Congress passed the Energy Independence and Security Act scaling up the RFS 

mandate to 13.2 billion gallons of corn-based ethanol annually by 2012 and to an 

unprecedented 36 billion gallons by 2022.  

In this paper we use modern statistical techniques to examine the causal nexus between 

ethanol, corn and other agricultural commodities, seeking support in favor or against the 

“Food versus Fuel” claim that food price inflation is primarily due to the ethanol production 

boom in the U.S. (see Figure 1). We study the relationship between the price of ethanol and 

the price of field crops and of cattle using data for Nebraska from January 1987 through 

March 2012. Although there are many ways of examining the interactions between time 

series of prices, our study is organized around two main blocks of results. First, we deal with 

long-run level relationships between ethanol and the other commodities by building on the 

bound testing approach of Pesaran, Smith, and Shin (2001). This approach allows the 

investigation when cointegration cannot be established because the series have different 

orders of integration. Next, we aim to determine whether ethanol has predictive power for the 

other series, or vice versa. We thus evaluate the short-run relationship between ethanol, field 

crops and cattle both in-sample, via Granger Causality testing, and out-of-sample, by 

analysing the predictive content of different models and comparing them against some 

benchmark specifications. 

 

[Figure 1 about here] 
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The results of unit root tests indicate that field crops, cattle and price indices are integrated of 

order one. As to ethanol, its price can be best described as being stationary around a broken 

trend. The break date, June 2005, can be associated to major policy changes in the U.S. 

ethanol market since, as noted above, the EPA was first voted in April 2005 and finally 

signed into law in August of the same year. The analysis of long-run relations between series 

with different orders of integration reveals that there is some evidence of a level relationships 

running from the price of corn to the price ethanol, but not vice versa. This evidence is 

however limited to the post-break period. Turning the attention to the short-run, we find no 

evidence of Granger causality and predictability running from ethanol to the other 

commodities (there is weak evidence for soybeans) is found. On the contrary the ethanol 

price is predictable by using the price of field crops. No linkages with cattle. Ethanol price 

does not seem to be the long-run driving force for the price of field crops and cattle. 

We conclude that, on the basis of a formal, comprehensive and rigorous causality analysis we 

do not find evidence in favour of the “Food versus Fuel” debate. 

The remainder of the paper is organized as follows. Section 2 consider the causal nexus 

between ethanol and food prices and reviews the relevant literature and findings concerning 

the “Food versus Fuel” debate. Section 3 discusses the data and the recent trends in corn and 

ethanol prices. Section 4 presents the econometric methodology and the empirical results are 

shown for both the long-run and the short-run. Concluding remarks complete the paper. 

 

2. Motivation and Related Literature 

On a given portion of arable land farmers grow corn. Corn can be used to produce ethanol, in 

which case it is supplied to refineries and used as an input, or alternatively can be further 

processed to be converted into flour for food purposes, into other “food” uses such as 

feedstock for cattle – cows are mainly fed corn – and into various industrial uses (Anderson 

et., 2008). A large portion of growth in corn demand is associated with growth in ethanol 

production because most U.S. ethanol is made from corn. Policy-induced shifts in the demand 

for ethanol or higher gasoline prices foster ethanol production, increasing its supply. More 

ethanol plants and production translates into more demand for corn, which in turn increases 

corn prices, ceteris paribus. Higher corn prices make corn more profitable to grow, causing 

some farmers to shift from other crops to corn production. This will also push food, seed, and 
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industrial users to shift from corn to other commodities, increasing their prices. This is the 

rationale for the “Food vs. Fuel” effect. 

As noted in the Introduction, a few years back a major debate burst on the extent to which 

biofuels policies may contribute to high agricultural prices levels and volatility along the 

chain of effects just outlined. The debate, which is still ongoing, has moved from 

environmental and non-profit organizations to international institutions and eventually to the 

scientific community. A World Bank paper released in July 2008, for instance, concluded that: 

“The increase in internationally traded food prices from January 2002 to June 2008 was 

caused by a confluence of factors, but the most important was the large increase in biofuels 

production from grains and oilseeds in the U.S. and EU. (…) The large increases in biofuels 

production in the U.S. and EU were supported by subsidies, mandates, and tariffs on imports. 

Without these policies, biofuels production would have been lower and food commodity 

price increases would have been smaller" (Mitchell, 2008, p.17). In the same year, according 

to a report prepared by the United Nations Conference on Trade and Development “Biofuel 

demand has thus been a strong factor underpinning the upward shift in global agricultural 

commodity prices. However, the extent of this linkage is not yet fully clear and varies 

according to the biofuel crop in question, how much it is traded, possibilities for substitution 

and whether land utilized to produce biofuel feedstocks would otherwise have been used for 

growing food” (UNCTAD, 2008, p.8). While the FAO continued to warn against the food 

price effect of sustained biofuel production (OECD-FAO, 2009), an independent study by 

OECD became more cautious stating that "the impact of current biofuel policies on world 

crop prices, largely through increased demand for cereals and vegetable oils, is significant but 

should not be overestimated. Current biofuel support measures alone are estimated to 

increase average wheat prices by about 5%, maize by around 7% and vegetable oil by about 

19% over the next 10 years" (OECD, 2008). And a new World Bank study concluded that its 

previous paper may have overestimated the contribution of biofuel production, as "the effect 

of biofuels on food prices has not been as large as originally thought” (Baffes and Haniotis, 

2010).  

The findings of the studies just reported have not generally been the result of rigorous 

statistical analysis. It has therefore been quite natural for the scientific community to get 

interested in the issue and analyze it with causality testing techniques. Under the “Food vs. 

Fuel” view causality would run from ethanol to corn prices and from corn price to the price 
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of food and other corn-based products.6 Could causality run in the opposite direction? In 

principle, yes. A food policy “away” from wheat, a supposedly close substitute of corn, could 

bring about a demand increase in the corn market and in turn an increase in its price (again 

assuming a fixed amount of arable land). As a consequence the price of a fundamental input 

to the refinery process would increase leading to higher ethanol prices.7 

After the ethanol price boom a few studies appeared purporting to econometrically assess the 

relationships, if any, between fuel and agricultural prices. Zhang et al. (2009) estimate a 

vector error correction model (VECM) on U.S. weekly data for corn, oil, gasoline, ethanol, 

and soybean prices over the period March 1989 – December 2007. All series are found to 

have a unit root and for the pre-ethanol boom period 1989-99 the authors find that ethanol 

and corn prices cointegrate. In contrast, the results indicate no long-run relationship between 

the two variables in the ethanol boom period 2000-07. In contrast to popular belief, between 

2000 and 2007 ethanol and corn do not appear to share any long-run price relationships. 

However, short-run relations may exist where ethanol prices do influence corn prices and 

vice versa. Interestingly, in the pre-boom period the price of corn is seen to Granger-cause 

the ethanol price, whereas a causality reversal occurs in the following period with fuel prices 

(ethanol, oil, and gasoline) now impacting corn prices.8 Saghaian (2010) use monthly time 

series data on oil, ethanol, corn, soybean, and wheat prices collected from January 1996 – 

December 2008. ADF tests show that all variables are integrated of order one and Johansen’s 

trace and maximum eigenvalue tests reveal the existence of a cointegrating vector among all 

price series. The author uses pairwise Granger-causality tests which indicate that there is a 

close bidirectional relationship between corn and ethanol prices. There are unidirectional 

relationships from soybeans and wheat price series to ethanol, and ethanol does not Granger 

cause soybeans or wheat price series. Ubilava and Holt (2010) study the relationship between 

energy and corn prices in the U.S.: using weekly averages of futures prices for the period 

October 2006 – June 2009 and a non-linear time series model for corn, the authors conclude 

that the inclusion of energy prices in the model does not yield better corn price forecasts. 

Using monthly data from 1990 to 2008 Serra et al. (2011) investigate whether ethanol, corn, 

                                                 
6 Of course this assumed relationship rests upon a few implicit assumptions, such as the presumption that 
amount of arable land is fixed over the short-run (Abbott, 2012). 
7 Along these lines Zilberman et al. (2012) provide a conceptual justification of why causality may run from 
food to biofuel prices and vice versa within a partial equilibrium framework. Hertel and Beckman (2010) and 
Timilsina et al. (2012) are two studies which investigate the issue with the help of a computable general 
equilibrium model. 
8 For the sake of brevity we do not report the evidence regarding oil, gasoline, and soybean prices. Zhang et al. 
(2009) also investigate the volatility of prices by means of a MGARCH model. 
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oil, and gasoline prices in the U.S. are characterized by a long-run equilibrium relationship 

and whether the adjustment toward this equilibrium relationship is of a nonlinear nature. In 

particular, the authors fit an exponential smooth transition VECM to the data that allows for 

nonlinear adjustments toward long-run equilibrium.9 An increase in energy prices is found to 

cause an increase in corn prices. This occurs mainly through the ethanol market and 

contributes to explaining the strong increases in corn prices during the ethanol boom in the 

second half of the 2000s. Corn price increases, however, also generate ethanol price 

increases, given the relevance of feedstock costs within the total costs of producing ethanol. 

Given the limitations to expanding corn production, at least in the short-run, an increase in 

the size of the ethanol market will cause corn price increases that in turn will yield higher 

ethanol prices. 

Motivated by the strong co-movement and increasing volatility of energy and agricultural 

prices, Du and McPhail (2012) examine the behavior of ethanol, gasoline, and corn prices 

over the period of March 2005–March 2011. Studying pairwise dynamic correlations between 

the prices in a multivariate GARCH model the authors identify a structural change around 

March 2008. A structural VAR model is subsequently estimated on the subsamples before 

and after the change point. In the more recent period, ethanol, gasoline, and corn prices are 

found to be more closely linked with a strengthened corn-ethanol relation which can be 

largely explained by the new developments of the biofuel industry and related policy 

instruments.10 Kristoufek, Janda, and Zilberman (2012a) analyze the relationships between 

the prices of biodiesel, ethanol and related fuels and agricultural commodities (corn, wheat, 

sugar cane, soybeans, sugar beets) using a minimal spanning trees and hierarchical trees 

approach. On the basis of monthly data it is found that the system splits into two well 

separated branches, a fuels part and a food part. Biodiesel tends to the fuels branch and 

ethanol to the food branch. When the periods before and after the food crisis of 2007-2008 

are compared, the connections are much stronger for the post-crisis period. Kristoufek, Janda 

and Zilberman (2012b) use weekly price data for the period November 2003 – February 2011 

to study price responsiveness and in-sample Granger Causality between biofuels (ethanol and 

                                                 
9 Peri and Baldi (2010) apply a nonlinear threshold VECM to investigate the presence of asymmetric dynamic 
adjustment processes between the prices of rapeseed oil, sunflower oil, soybean oil, and the price of a mineral 
oil (diesel) in the EU for the period 2005–2007. 
10 A structural VAR model is also estimated by Zhang et al. (2007) and by McPhail (2011). There are a few 
studies in the literature concentrating on the relationship between fuel prices, including biofuels, but without 
reference to agricultural products. Similarly there are a few studies looking at the relationship between (sugar 
cane based) ethanol and sugar, among other fuels and products, but disregarding corn. We do not report them 
here. 
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biodiesel), their production factors (corn, wheat, soybeans and sugarcane) and fossil fuels 

(Brent crude oil, German diesel and U.S. gasoline). After controlling for seasonality and 

trends, they show that both ethanol and biodiesel prices do not contain a unit root. Their in-

sample tests show that there is short-run Granger Causality running from corn to ethanol 

prices. Finally, Enders and Holt (2012) examine the underlying reasons for shifts in grain 

prices. An unrestricted VAR model is first used to analyze the relationship between grain 

prices and a number of macroeconomic variables including real exchange rates, interest rates, 

and energy prices. A VAR allowing for smoothly shifting means subsequently focuses on a 

larger set of agricultural commodities and variables more directly influencing commodity 

prices such as transport costs, climate conditions. It is shown that in addition to the general 

rise in real energy prices, the introduction of ethanol as an important fuel source has 

contributed to the run-up in grain prices. 

 

3. Data 

We use monthly time series of nominal spot prices for ethanol, corn, soybeans, wheat and 

cattle recorded in Nebraska from January 1987 through March 2012 (December 2010 for 

cattle). The price of ethanol is expressed in dollars per gallon, the prices of field crops (i.e. 

corn, soybeans and wheat) are in dollars per bushel, while the cattle price is expressed in 

dollars per hundredweight.11 The ethanol price was extracted from the Nebraska Energy 

Office database, while prices of crops and cattle are available from the National Agricultural 

Statistics Service maintained by the U.S. Department of Agriculture. From this source we 

also took the dollar value of production of field crops and cattle that we used to construct the 

time-varying weights of two price indices: a “crops price index” (price index 1) that includes 

the three field crops and a “crops and cattle price index” (price index 2) which adds cattle to 

the crops.12 

Our empirical analysis focuses on the state of Nebraska because of its importance in the U.S. 

ethanol industry and of the availability of a very long span of data. As shown in Figure 2, the 

nameplate capacity of Iowa, Nebraska and Illinois is equivalent to 26.10%, 12.97% and 

                                                 
11 For wheat and soybeans one bushel is equivalent to 60 pounds or 27.22 kilograms; for corn one bushel 
corresponds to 56 pounds or 25.40 kilograms. A hundredweight is defined as 100 pounds, which is equivalent to 
45.36 kilograms. 
12 More details about the data and the construction of the price indices are provided in an appendix available 
from the authors upon request. 
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9.02%, respectively of the nation’s total (13596 million gallons per year).13 Nebraska ethanol 

and corn prices data have been used by Elobeid and Tokgoz (2008), Serra et al. (2011), 

McPhail (2011), Blomendahl et al. (2011), and Enders and Holt (2012).14  

 

[Figure 2 about here] 

 

The dynamics of our price indices is shown in Figure 3.  The price history of ethanol can be 

ideally divided in two periods. The first one runs from 1987 through the early 2000’s and is 

characterized by relatively stable prices and low volatility; during the more volatile second 

period the dynamics of the Nebraska ethanol market can be described as succession of price 

ups and downs. As it can be seen from the upper panel of Table 1, over the period January 

1987 – March 2012 the price of ethanol was on average 1.53 dollars per gallon and displayed 

a standard deviation equal to 0.53 and a coefficient of variation equal to 0.35. If we compute 

these statistics for the period running through December 2003, we get an average price of 

1.23 dollars per gallon which is associated with a standard deviation and a coefficient of 

variation equal to 0.17 and 0.14, respectively. For the observations running from January 

2005 through March 2012, the average, standard deviation and coefficient of variation 

increase to 2.15 dollars per gallon, 0.48 and 0.22, respectively. 

 

[Figure 3 about here] 

 

A joint inspection of Figure 3 and of Panel (a) and in Table 1 shows that the second period 

started with a price increase that culminated at a record high of 3.58 dollars per gallon in June 

2006. The dynamics of the first price index, which includes only field crops, is very similar to 

                                                 
13 According to the Nebraska Energy Office, as of February 2011 27 U.S. states had operating ethanol facilities 
and the state of Nebraska ranked second both in terms of nameplate capacity (1764 million gallons per year) and 
operating production (1739 million gallons per year). Moreover, according to Solomon et al. (2007) in 2006 four 
of the leading ethanol producing firms in the U.S. had distilleries in the state of Nebraska; among these Archer 
Daniels Midland accounted for 19% of total production. 
14 Although Iowa is the most important ethanol producer in the U.S., Nebraska data are preferable for the aim 
and the methods of our study. Iowa the time series start only in 2006 and contains less than 300 weekly 
observations. There are two problems with these data: first, we cannot appreciate the market developments prior 
to 2006 when the ethanol marked had already boomed; second, in order to have a reasonable number of 
observations for both estimation and forecast evaluation, out-of-sample tests should be carried out on samples 
starting after 2008, namely after the burst of the oil price bubble. Having such a volatile period in the evaluation 
sample makes the forecast evaluation more interesting and renders benchmark models more difficult to beat. 
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that of ethanol, while the pattern of price index 2 is heavily influenced by the presence of 

cattle price that, with a coefficient of variation 0.15, is the least volatile series. Price index 1 

displays two main peaks, the most important one occurring in June 2011, two months before 

both corn and soybeans prices reached their maxima (6.93 and 13.30 dollars per bushel, 

respectively). The second peak was recorded in March 2008, three months before ethanol 

reached 2.9 dollars per gallon. This peak is the result of crop fields reaching very high or 

record price levels: corn reached 5.4 dollars per bushel in June 2008, while soybeans and 

wheat prices settled at their record levels (13.3 dollars per bushel in July 2008 and 9.84 

dollars per bushel in March 2008, respectively). 

 

[Table 1 about here] 

 

Descriptive statistics for the percentage change of log-prices (i.e. returns) are shown in Panel 

(b) of Table 1. The unconditional distributions of all series is slightly asymmetric and 

displays different degrees of excess kurtosis. The last four rows of Panel (b) show correlation 

coefficients between returns on price indices, field crops, cattle and contemporaneous, lagged 

and leaded returns on ethanol, as well as the corresponding p-values indicating the probability 

of rejecting the null hypothesis of zero correlation. The contemporaneous correlation 

coefficients are all positive, but statistically nil at the 95% confidence level. Also the 

correlations between leads of ethanol and returns on price indices, field crops and cattle are 

all statistically not different from zero. On the contrary, the correlation coefficients between 

lagged ethanol returns, corn and soybeans are positive and statistically significant, suggesting 

that ethanol might prove useful in forecasting these series. 

 

4. Methodology and Empirical Results 

The empirical strategy we follow first aims at assessing whether or not a long-run 

cointegrating or, more generally, level relationship exists among the (log of the) price series 

of ethanol, aggregate price indices, field crops and cattle. We next turn to study short-run 

interactions and causality links based on (percentage) first differences of (log) prices.15 In this 

process we pay special attention to structural breaks by using methods capable of taking them 

                                                 
15 In the case of no cointegration Granger causality can be studied on the basis of first differences only, ignoring 
any linkages between price levels, that would otherwise have been captured with an error correction term. 
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into account. In terms of notation prices are represented by Pj,t where j = E (ethanol), 1 (price 

index 1), 2 (price index 2), C (corn), S (soybeans), W (wheat), B (cattle). Lower case letters 

denote the logarithm of prices (i.e. pj,t = lnPj,t), while the percentage log-return on commodity 

j is rj,t = 100pj,t = 100(pj,tpj,t-1). As a preliminary step we need to look at the stationarity  

properties of our price series. 

4.1 Stationarity 

To investigate the statistical properties of the log-price series we use the standard tests 

proposed by Dickey and Fuller (1979) in its augmented form (ADF), by Phillips and Perron 

(1988) (PP), and by Kwiatkowski, Phillips, Schmidt, and Shin (1992) (KPSS). It is just worth 

recalling that the null hypothesis of ADF and PP tests is that the series has a unit root, 

whereas the null hypothesis of the KPSS test is that the series is stationary around a 

deterministic trend. Therefore, in the case of ADF and PP failing to reject of the null provides 

evidence of unit root behaviour; on the contrary, the KPSS provides evidence of stationarity 

when the null is not rejected. The outcome of these tests for the log-price of ethanol, field 

crops, cattle and the two price indices is presented in Table 2. 

 

[Table 2 about here] 

 

All tests are carried out including either just a constant, or a constant and a trend in the test 

equation. For the majority of price series both the ADF and the PP test do not reject the null 

hypothesis of a unit root and the KPSS rejects the null hypothesis of trend stationarity. 

Interestingly, when the test equation includes a constant and a trend function, both ADF and  

PP reject the null hypothesis of a unit root in the log-price of ethanol.16 

Because of the market and policy changes discussed in the Introduction, structural breaks 

cannot be ruled out for our series. In that event Perron (1989) has shown that standard 

procedures are biased towards non-rejection of the null. Therefore, he proposes a test of the 

null hypothesis that a series has a unit root with drift and that an exogenous structural break 

occurs at some known date, against the alternative that the series is stationary around a 

broken trend function, with an exogenous change at time Tb (1 < Tb < T). The main drawback 

of Perron’s strategy is that the time of the break is assumed to be known. To circumvent this 
                                                 
16 Results not shown here suggest that for the first difference of log-prices the null of a unit root can always be 
rejected. 
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problem Zivot and Andrews (1992) have developed a test statistic that allows to determine 

the break date within the testing procedure. The authors propose to use the ADF statistic to 

sequentially test Perron’s null hypothesis by varying the break date that is then determined by 

the minimum of the ADF test over the sequence of tests. They provide critical values for their 

test and the null hypothesis is rejected when the minimum of the ADF test is lower that the 

critical value. The Zivot-Andrews test for a unit root against broken-trend stationarity is 

presented in Table 3. 

 

[Table 3 about here] 

 

Although for price indices, field crops and cattle the outcomes of the test are in agreement 

with those of the ADF and PP tests, the null hypothesis of a unit root in the price of ethanol is 

strongly rejected. Both model A (second column of the table), that includes a break in the 

constant, and model C (fourth column), that includes a break in the constant and in the slope 

of the trend function, select June 2005 as the break date.17 Interestingly, as reported above, 

this date can be associated with major policy changes that have affected the U.S. ethanol 

market as noted above: indeed, the Energy Policy Act (EPA) was first voted by the U.S. 

House of Representatives on April 21, 2005 and then by the U.S. Senate in June 28, 2005; it 

was passed by the U.S. Congress on July 29 and finally signed into law by President George 

W. Bush on August 8 of the same year. The EPA has increased the amount of biofuel that 

must be mixed with gasoline sold in the United States. The EPA and the increasing 

restrictions on MTBE as a fuel oxygenate might be responsible for the rapid growth in U.S. 

ethanol production and use over the last decade (Solomon et al. 2007). 

Given that the EPA might be the cause of the break in the ethanol price series in June 2005, 

in Table 4 we use such date to split the sample in a pre- and post-break period and present the 

ADF, PP and KPSS test. 

 

[Table 4 about here] 

 

                                                 
17 Model B in the table includes a break in the slope only. 
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The sample split highlights that ethanol can be considered as stationary before and after the 

break. The same can be said for price index 1 and the price of field crops before the break. 

For the post-break sample we can conclude that price indices and field crops have a unit root, 

while the results for cattle price are mixed. The main implication of these results is that 

ethanol price is stationary while most of the other price variables have a unit root: we cannot 

therefore apply cointegration techniques to study the relationship between these price levels. 

4.2 Long-Run 

Rejection of the null hypothesis of unit root has relevant implications. This implies that series 

can be analysed in their first differences, but that standard cointegration techniques cannot be 

applied. This however does not mean that we cannot study level relationships among our 

series. A methodology that allows to reduce pre-test biases is the “bound testing” approach 

proposed by Pesaran, Smith, and Shin (2001) (PSS): we can use it to check whether a 

relationship exists between the price of ethanol and other variables. The approach can be 

conveniently applied regardless of the order of integration and of cointegration of variables. 

In order to carry out the test we need to choose which variable is “long-run forcing”. For 

instance, the assumption that ethanol is long-run forcing for corn implies that the latter 

commodity has no long-run impact on the former. In this case a test of the null hypothesis of 

no long-run relationship running from ethanol to corn can be carried out after estimating the 

following model: 

 

tjtEj
q
jjtCj

p
jtEtEtCtC ppppptp   





 ,

1
1,

1
1,1,1,10,         (1) 

 

The bound test is obtained by calculating the F-statistic for the joint significance of lagged 

prices, that is H0:  = 0,  = 0. Pesaran, Smith and Shin (2001) provide two sets of critical 

values: a lower critical value bound, which assumes that all regressors are I(0), and an upper 

critical value bound, for cases when all regressors are I(1).18 A value of the F-statistic below 

the lower bound implies that H0 cannot be rejected and hence no long-run relationship exists; 

on the contrary, when the F-statistic exceeds the upper bound, H0 is rejected and it is 

                                                 
18 As a matter of fact, given that the distribution of the bound-F test depends on the exogenous variables 
included in the test equation, the authors provide more than two sets of critical values. For instance, in our  
empirical analysis we used a set of critical values that assume that both a trend and a constant are included in the 
model, and another set that is based on the assumption that only the constant enters the model.  
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concluded that there is a long-run relationship between prices. The test is inconclusive when 

the F-statistic falls within the lower and upper bound. 

To implement the PSS test we estimate by OLS two sets of six bivariate models like (1), after 

having determined the number of lagged first differences of both the dependent and the 

independent variables with the Schwarz Information Criterion: in one case we assume that 

ethanol is long-run forcing for the other six series, in another case we assume that it has no 

long-run impact on the other variables (i.e. the series j ≠ E is long-run forcing for ethanol). 

The results are presented in Tables 5 and 6. 

 

[Table 5 about here] 

[Table 6 about here] 

 

In Table 5 the ethanol price is assumed to be long-run forcing for the other variables. For 

each sample period – full, pre- and post-break – the bound test is carried out with and without 

the trend in the test equation. In most cases the F-test lies below the lower 5% critical value 

bound, thus rejecting the null hypothesis and suggesting that, when ethanol is assumed to 

drive the other variables in the long-run, no level relationship can be detected in any of the 

sample periods. In the remaining cases the value of the statistic lies between lower and upper 

bound ands the test is inconclusive. 

Table 6 shows the results for the same tests when price indices, the price of field crops or 

cattle respectively are long-run forcing for ethanol. Some very interesting results emerge: (i) 

the sample split helps identifying a level relationship from corn to ethanol in the more recent 

post-break period, while no level relationship is detected over the full sample or before the 

break; (ii) a post-break level relationship with ethanol is identified also for wheat; (iii) 

ethanol and soybeans do not share any level relation; (iv) level relationships between ethanol 

and the two price indices are found in both sub-samples, but not in the full sample. 

4.3 Short-Run 

We now turn to study whether short-run movements of the ethanol price affect the price of 

field crops and cattle, or vice versa. We do so in a stepwise fashion, by first testing for 

Granger causality and then by analysing out-of-sample forecasting ability.  
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When testing the null of no Granger Causality (GC) running from ethanol to commodity i we 

estimate the following “two-by-two” models: 

 

ri,t = i + E rE,t-1 + i ri,t-1 + ui,t  i = 1, 2, C, S, W, B         (2) 

 

Tests of the null hypothesis of no GC running from commodity i to ethanol are based on the 

estimation of the models: 

 

rE,t =  + j rj,t-1 + E rE,t-1 + uj,t  j = 1, 2, C, S, W, B          (3) 

 

In this second case we also regress the ethanol price against the price of corn, soybeans and 

wheat together with (without) cattle: 

 

rE,t =  + C rC,t-1 +S rS,t-1 +W rW,t-1 +  rE,t-1 + ut           (4) 

rE,t =  + C rC,t-1 +S rS,t-1 +W rW,t-1 +B rB,t-1+ rE,t-1 + ut         (5) 

 

All parameters have been estimated with OLS using the entire sample of observations 

January 1987 – December 2010 when either cattle or price index 2 entered the specification, 

or January 1987 – December 2010 for all the other specifications. All standard errors are 

Heteroskedastic and Autocorrelation Consistent (HAC) following Newey and West (1987).19 

GC testing is carried out on the basis of F-tests of the null hypothesis that the estimates of the 

s in a given model are jointly equal to zero. 

One problem with this standard approach is due to the presence of structural breaks in some 

of the price series under scrutiny. This was found to be the case for ethanol. It is therefore 

likely that the relations (2)-(5) have changed. As shown by Rossi (2005), in the presence of 

instabilities traditional GC testing may have little or no power. To cope with this possibility 

                                                 
19 HAC estimates of the covariance matrix have been calculated using a Bartlett kernel and setting the lag 
truncation equal to the nearest integer of T (1/3), where T is the number of available observations. 
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we preliminarily test for the null of parameter stability in equations (2)-(5) using the Quandt 

Likelihood Ratio (QLR) test developed by Andrews (1993).20 

After ascertaining whether or not the estimated parameters are stable we carry out a test for 

the joint null hypothesis of stability and no GC proposed by Rossi (2005). Like the QLR test, 

Rossi’s statistic is based on a sequence of tests of the joint null hypothesis of no break at date 

, where .15T ≤ ≤ [.85T], and of no GC: that is, are the s and s constant throughout the 

sample period and are the s jointly statistically different from zero? The test, referred to as 

optimal Exponential Wald test, denoted as Exp-W*, has a non-standard distribution which 

has been tabulated by Rossi (2005). Rejection of the null hypothesis can occur either when 

parameters are not stable or when, even if they are constant, are different from zero. In both 

cases a rejection is evidence of GC.21 

4.3.1 Does Ethanol Granger Cause Field Crops or Cattle? 

Table 7 displays the (full sample) OLS parameter estimates for equation (2) and the outcome 

of the tests of the null hypothesis of no GC running from ethanol to returns on price indices, 

field crops and cattle. 

 

[Table 7 about here] 

 

We see that the AR(1) term is always statistically significant. Moreover, since these 

coefficients are positive and not very close to one, their average being .31, they suggest that 

returns on price indices, field crops and cattle have low degree of persistency. Only two 

parameters associated with lagged ethanol returns are statistically significant. They provide 

evidence of negative correlations between the lags of ethanol returns and returns on corn and 

soybeans. The remaining estimates are positive, but statistically insignificant. 

The null of no GC is rejected for corn and soybeans. The strongest rejection is recorded for 

soybeans that displays a p-value lower than 1%, while the null that corn is not Granger-

caused by ethanol is rejected only at 10% significance level. 

                                                 
20 This test is the maximum of a series of Chow test statistics testing the hypothesis of no break at date τ, where τ  
is such that .15T ≤ τ ≤ [.85T], T is the number of observations and [.] denotes the integer part of a number. We 
use the QLR statistic to test the stability of the α and β parameters of our equations. The distribution of the test 
is non-standard and has been tabulated by Andrews (1993). 
21 If parameters are not constant over time it means that either before or after the break they are different from 
zero, and hence that GC is present at least in one of the two subsamples. 
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As noted above, if the parameters of the model underlying GC testing procedures are time-

varying, traditional inferences have no power. The QLR test for the null hypothesis of 

stability of the constant and lagged ethanol returns reported in panel (a) of Table 8 does not 

provide evidence of parameter instability. 

 

[Table 8 about here] 

 

Rossi’s (2005) Exp-W* test is shown in panel (b) of the table. This test never rejects the joint 

null hypothesis of parameter stability and no GC running from ethanol to the other variables. 

Since the statistic is carried out on the constant and the parameter associated with the first lag 

of ethanol returns, a non-rejection of the null hypothesis means these parameters are stable 

and that a model including only the AR(1) term cannot be rejected. 

On the basis of the above tests we can conclude that (i) parameters relating ethanol to price 

indices, field crops and cattle are stable and that (ii) there is weak evidence in favour of GC 

running from ethanol to corn and soybeans. We say “weak” for two reasons: first, the results 

of Rossi’s tests contradict those from traditional testing procedures; second, if one believed 

that these results are sufficient to state that there is evidence of GC running from ethanol to 

field crops, in fact the only conclusion that can be drawn is that those models could have a 

better performance in forecasting the returns of the other commodities if lagged returns on 

ethanol are used. We address below the issue of out-of-sample predictive ability of models 

with and without lagged ethanol returns, which helps understanding whether the previous 

weak evidence of GC actually translates into improved forecasts thanks to the information 

provided by ethanol. 

4.3.2 Do Field Crops or Cattle Granger Cause Ethanol? 

Turning now to ask whether field crops or cattle have in-sample predictive power for ethanol, 

the answer is provided in Table 9, with the issue of parameter stability and GC testing taken 

up in Table 10.  

 

[Table 9 about here] 

[Table 10 about here] 
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Table 9 shows OLS estimates and GC tests for the models in equations (3)-(5). The AR(1) 

coefficient is always statistically significant and in the range .24-.25, thus suggesting that also 

returns on ethanol do not show a high degree of persistence reverting quite quickly to their 

mean value. The correlation between ethanol returns and lagged returns on price indices is 

positive but statistically insignificant. Corn and soybeans also show a positive and significant 

correlation with ethanol in bivariate models, but are not statistical significant in the 

multivariate model (4). Lagged returns on cattle are positive and significant only in the 

multivariate model (5). 

The GC test rejects the null hypothesis of no causality only for corn and soybeans. In general 

the p-values associated with these rejections are higher than those we obtained when looking 

at GC from ethanol to corn and soybeans. Coupled with the evidence in Table 8 these results 

point to the existence of a feedback relationship between ethanol, corn and soybeans. 

However, we concluded above that ethanol shows predictive ability only for soybeans. 

The QLR test displayed in panel (a) of Table 10 provides very limited evidence of parameter 

instability; the Exp-W* test in panel (b) marginally rejects the null hypothesis of stability and 

no GC only for model (5) that includes lagged returns on field crops and cattle. This result 

implies that, if parameter instability is taken into account, there is some evidence of GC 

running from regressors in model (5) to ethanol, but this relationship might not be stable over 

time. 

4.3.3 Ethanol and Field Crops: Granger Causality and Forecasting Ability 

Only few studies, among those reviewed in Section 2, analyze the relationship between the 

prices of ethanol and corn, or more generally of biofuels and agricultural commodities, within 

a formal Granger-causality framework. When they do so, those papers in general entertained 

only in-sample testing procedures (see Saghaian, 2010; Zhang et al. 2007; Zhang et al., 2009). 

Nothing is said about the out-of-sample performance of the estimated models, although it can 

be argued that this perspective is more consistent with the definition of causality originally 

put forth by Granger (1969, 1980). In this subsection we aim to determine whether ethanol 

has predictive power for the other series, or vice versa. We do so by analyzing the predictive 

content of different models and comparing them against some benchmark specifications. This 

approach is in line with the one advocated by Ashley et al. (1980) who note that, since the 

definition of causality introduced by Granger (1969) is a statement about predictive ability, 
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in-sample testing has to be considered merely as a first step, always to be complemented with 

an out-of-sample analysis.22 

We compare the Mean Squared Forecast Error (MSFE) of forecasts from models (2)-(5) with 

three benchmarks: a first order autoregressive model, AR(1), and two random walk models, 

without and with drift, which we denote as RW and RWD respectively.23 Forecasts are 

obtained using a rolling forecasting scheme: a window of R = [.5T] observations is used to 

estimate models (2)-(5) and to generate one-month ahead forecasts. The iteration of this 

procedure, that moves the estimation window forward one month at a time, produces a set of 

forecast vectors, one for each model, of size T-R. 24  We finally evaluate the statistical 

significance of MSFE differentials (i.e. MSFE of each estimated model in (2)-(5) minus the 

MSFE of the benchmark b with b = AR(1), RW, RWD) with the Clark and McCracken (2001) 

encompassing test for nested models, denoted as ENC-NEW. The null hypothesis of the 

ENC-NEW test is that the additional information used by a model does not improve the 

forecasting performance of the benchmark model. A rejection of the null implies that the 

additional regressors that enter a model have out-of-sample forecasting power for the 

dependent variable. The distribution of the ENC-NEW test is non-standard and depends on 

the forecasting scheme, on the ratio between the size of the estimation sample and the size of 

evaluation sample, and on the number of restrictions that need to be imposed on the bigger 

model so as to obtain the benchmark. 25  Critical values for the ENC-NEW statistic are 

provided by Clark and McCracken (2000). 

Results of the out-of-sample evaluation of the models in (2) against AR(1), RW, and RWD 

benchmarks are displayed in Table 11. We present two sets of results: the MSFE error 

differential and the p-values associated with the Clark and McCracken (2001) ENC-NEW. 

 

                                                 
22 The point was also stressed by Granger (1980) who showed that in-sample tests of the null hypothesis of no-
causality are essentially tests of goodness of fit which, in the case of a rejection of the null hypothesis, inform 
the analyst that one variable could help improving the forecasts for the other variable. The author noted that 
“this is quite different from actually producing improved forecasts” (Granger, 1980, p. 348): thus, tests 
comparing the predictive ability of different models (based on different information sets) out-of-sample are a 
necessary second step to be consistent with the original definition Granger causality. 
23 For equations (2) the benchmark AR(1) models can be written as ri,t = i + i ri,t-1 + ui,t where i = 1, 2, C, S, W, 
B. For equations (3)-(5) the benchmark AR(1) model is rE,t =  + E rE,t-1 + uE,t. The RW forecast for t+1 is rj,t = 
0, while the RWD model is rj,t = j where j = E, 1, 2, C, S, W, B. 
24 For cattle and price index 2 the evaluation sample spans January 1999-December 2010 (144 observations), 
while for all the other forecasts it runs from September 1999 through March 2012 (151 observations). 
25 When evaluating the predictive performance of models against the RW and the RWD benchmarks, the 
autoregressive term is dropped from models in (2)-(5). 
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[Table 11 about here] 

 

The MSFE differential is the MSFE of the model minus the MSFE of the benchmark: a 

negative (resp. positive) value suggests that the model including lagged ethanol returns is 

better (resp. worse) at forecasting the return of a given commodity than the benchmark. Since 

the table shows that majority of MSFE differentials are greater than zero, the benchmarks are 

rarely out-performed by models that make use ethanol to forecast price indices, field crops or 

cattle. A notable exception is soybeans, for which the model that includes ethanol leads to 

more accurate forecasts than the AR(1) and RWD benchmarks. However, ethanol does not 

improve the forecasting performance above that of the simple RW specification for soybeans. 

The ENC-NEW test rejects the null hypothesis when forecasts based on ethanol for price 

index 2 and soybeans are evaluated against the AR(1) model as well as the RWD benchmark. 

Therefore, for both price index 2 and soybeans there is evidence that ethanol improves the 

out-of-sample predictive ability of some of the benchmarks. 

On the basis of the results in this and the previous sub-sections we can conclude that there is 

only very limited evidence of Granger causality and out-of-sample predictability running 

from ethanol to field crops. The most robust result is for soybeans, for which ethanol seems 

to have predictive power both in-sample and out-of-sample. In addition, we can conclude that 

ethanol has no predictive power, neither in-sample, nor out of sample for wheat, cattle and 

price index 1. 

Ethanol forecasts have been obtained in the same way as the forecast of field crops, cattle and 

price indices just presented; MSFE differentials and the ENC-NEW tests are shown in Table 

12. 

 

[Table 12 about here] 

 

When forecasting ethanol, models that use corn or soybeans lead to lower losses than any of 

the benchmarks: MSFE differentials are negative and the ENC-NEW test always rejects the 

null hypothesis. Therefore those models out-perform the benchmarks. In some cases we can 

marginally reject the null hypothesis of the ENC-NEW test also for multivariate models (4)-

(5): these models outperform both AR(1) and RWD benchmark forecasts. 
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To conclude, we  are now able to draw more robust conclusions on GC between the prices of 

ethanol, field crops and cattle. First, the overall predictive in-sample and out-of-sample 

ability of ethanol for the other variables is very low. Second, corn and soybeans have both in-

sample and out-of-sample predictive power for ethanol. Therefore, we can argue that ethanol 

is Granger caused by corn and that there is a feedback relation between ethanol and soybeans. 

Third, no causality is found between ethanol, wheat, cattle and price indices. Lastly, we can 

state that these relations are quite stable over time.26 

 

5. Conclusions 

In this paper we have examined the causal nexus between ethanol and corn and other 

agricultural commodities, seeking support in favor or against the “Food versus Fuel” claim 

that food price inflation is primarily due to the ethanol production boom in the U.S. Our 

analysis studied the relationship between the price of ethanol and the price of field crops and 

of cattle in Nebraska from January 1987 through March 2012. Although there are many ways 

of examining the interactions between time series of prices, our study was organized around 

two main blocks of results. First, we dealt with long-run level relationships between ethanol 

and the other commodities by building on the bound testing approach of Pesaran, Smith, and 

Shin (2001). This approach allows the investigation when cointegration cannot be established 

because the series have different orders of integration. Next, we aimed to determine whether 

ethanol has predictive power for the other series, or vice versa. We evaluate short-run the 

relationship between ethanol, field crops and cattle both in-sample, via Granger Causality 

testing, and out-of-sample, by analysing the predictive content of different models and 

comparing them against some benchmark specifications. 

Among other results we found no evidence of Granger causality and predictability running 

from ethanol to the other commodities (weak evidence was found for soybeans). On the 

contrary the ethanol price is predictable by using the price of field crops. No linkages with 

cattle. Ethanol price does not seem to be the long-run driving force for the price of field crops 

and cattle. 

We conclude that, on the basis of a formal, comprehensive and rigorous causality analysis we 

did not find evidence in favour of the “Food versus Fuel” debate. 

                                                 
26 An appendix available from the authors provides additional results based on the Toda and Yamamoto (1995) 
procedure to test the null hypothesis of no GC within a Vector Autoregression for log-prices. The procedure can 
be applied to series, whether integrated or cointegrated. The results confirm the findings presented here. 
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Figure 1: Ethanol and Corn Prices and Percentage of Corn Used for Feedgrain, 

Fuel Ethanol, and Exports (1980-2011) 

 
 

Figure 2: Ethanol Nameplate State Capacity as Percentage of Total U.S. in 2011 
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Note: data from the Nebraska Energy Office (as of February 2011). The nameplate capacity is the full–load 
continuous rating of a generator, prime mover (i.e. the engine, turbine, water wheel, or similar machine that 
drives an electric generator), or other electric equipment under specified conditions as designated by the 
manufacturer. It is usually indicated on a nameplate attached to the equipment. 
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Figure 3: Ethanol Price, Price Indices, Field Crops and Cattle Prices 
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Note: all prices are in current dollars and have been multiplied by 100 and divided by their value in January 
1987 to put them on a common scale. 
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Table 1: Descriptive Statistics 

Panel (a): Prices  

  
 

Ethanol  
 Price Index 
(Excl. cattle) 

 Price Index 
(Incl. Cattle)  Corn  

 
Soybeans   Wheat  Cattle 

Average 1.53 102.63 347.25 2.70 6.71 3.84 76.52 
Coef. Var. 0.35 0.51 0.28 0.40 0.33 0.38 0.15 
Min 0.89 47.46 215.08 1.43 4.00 1.99 58.60 
Date Min 01/1987 01/1987 01/1987 02/1987 10/2001 11/1999 09/1998
Max 3.58 287.70 723.11 6.93 13.30 9.84 104.00 
Date Max 06/2006 06/2011 12/2010 08/2011 08/2008 03/2008 12/2010
T 303 303 288 303 303 303 288 

Panel (b): First Difference of Log-Prices 

  
 

Ethanol  
 Price Index 

(Excl. Cattle) 
 Price Index 
(Incl. Cattle)  Corn  

 
Soybeans   Wheat  Cattle 

Average 0.09 0.15 0.06 0.09 0.05 0.08 0.19 
Coef. Var. 82.05 38.80 55.55 60.25 93.56 66.21 17.67 
Skewness 0.40 0.53 0.37 -0.62 -0.23 -0.54 0.02 
Kurtosis 4.26 10.76 5.79 6.60 4.81 6.57 4.51 
Corr (Et,Xt) - 0.06 0.10 0.05 0.06 0.05 0.07 
(p-value) - (0.2799) (0.0781) (0.4122) (0.2738) (0.3982) (0.2586)
Corr (Et,Xt+1) - 0.07 0.04 0.16 0.15 0.03 0.05 
(p-value) - (0.2198) (0.4949) (0.0060) (0.0085) (0.5533) (0.4122)
Corr (Et+1,Xt) - 0.03 0.08 -0.06 -0.09 0.06 0.05 
(p-value) - (0.6378) (0.1679) (0.3118) (0.1247) (0.3126) (0.4280)
Notes: In Panel (b) "Corr (E,X)" denotes the correlation coefficient between ethanol and the series on columns (2)-
(7). 
 

 

Table 2: ADF, PP and KPSS Unit Root Tests 

Test:  ADF Phillips-Perron KPSS 

 C C & T C C & T C C & T 

Ethanol 0.2012 0.0473** 0.1696 0.0539* NS NS 
Price Index 1 (Excl. Cattle) 0.8145 0.7809 0.7453 0.6441 NS NS 
Price Index 2 (Incl. Cattle) 0.9536 0.9508 0.9280 0.9085 NS NS 
Corn 0.5011 0.5270 0.7000 0.7327 NS NS 
Soybeans 0.4432 0.4570 0.5094 0.5425 NS NS 
Wheat 0.4503 0.5380 0.2591 0.2760 NS NS 
Cattle 0.7296 0.0821* 0.5386 0.3742 NS NS 
Notes: All prices in logs. The values in the table are p-values of the null hypothesis that a series has a unit root. In the 
case of the KPSS test “NS” denotes rejection of the null hypothesis of trend stationarity at 95% confidence level. “C” 
and “ C&T” indicate whether a constant and a constant and a trend have been respectively included in the test 
equation. 
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Table 3: Zivot-Andrews Unit Root Test 

 Model A Model B Model C 

Series t-stat Date t-stat Date t-stat Date 

Ethanol -5.41*** 6/2005 -4.64** 12/1998 -5.39** 6/2005
Price Index 1 (Excl. Cattle) -3.85 - -4.29* 5/2003 -4.55 - 
Price Index 2 (Incl. Cattle) -3.04 - -3.85 - -4.27 - 
Corn -4.26 - -4.25* 1/2005 -4.52 - 
Soybeans -4.17 - -4.10 - -4.62 - 
Wheat -4.15 - -3.49 - -4.33 - 
Cattle -4.45 - -3.78 - -4.61 - 
Notes: Prices in logarithms. The test evaluates the null hypothesis of unit root against the alternative of broken-
trend stationarity. The symbols (*), (**), and (***) denote rejection of the null hypothesis at the 10%, 5%, and 1% 
confidence levels respectively. Critical values for models A, B, and C are from tables 2-4 of Zivot and Andrews 
(1992). 

 

 

Table 4: Unit Root and Stationarity Tests Before and After the Break: Log-Prices 

Panel (a): First Sample, January 1987 - June 2005 

Test: ADF Phillips-Perron KPSS 

Exogenous: C C & T C C & T C C & T 

Ethanol 0.0126** 0.0439** 0.0015*** 0.0078*** S NS 
Price Index 1 (Excl. Cattle) 0.0097*** 0.0551* 0.0135** 0.0751* S S 
Price Index 2 (Incl. Cattle) 0.0262** 0.1178 0.0349** 0.1661 S S 
Corn 0.0029*** 0.0152** 0.0404** 0.1454 S NS 
Soybeans 0.0177** 0.0684* 0.0593* 0.1829 S S 
Wheat 0.0542* 0.1896 0.0636* 0.2174 S S 
Cattle 0.0612* 0.1461 0.2049 0.4115 S NS 

Panel (b): Second sample, July 2005 - March 2012 (December 2010) 

Test: ADF Phillips-Perron KPSS 

Exogenous:  C C & T C C & T C C & T 

Ethanol 0.0027*** 0.0151** 0.0371** 0.1302 S S 
Price Index 1 (Excl. Cattle) 0.5480 0.3096 0.5735 0.3391 NS S 
Price Index 2 (Incl. Cattle) 0.7709 0.5706 0.8039 0.5698 NS NS 
Corn 0.7783 0.8445 0.7421 0.7446 NS NS 
Soybeans 0.8430 0.7630 0.7608 0.5254 NS NS 
Wheat 0.2837 0.6738 0.2630 0.6249 S NS 
Cattle 0.0475** 0.1682 0.2378 0.5230 S S 
Notes: values in the table are p-values of the null hypothesis that a series has a unit root. For the KPSS test 
“S”denotes that the null hypothesis of trend stationarity cannot be rejected at 95% confidence level. “C” and “T” 
indicates whether a constant and/or a trend have been included in the test equation. 
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Table 5: F-statistics for Testing the Existence of a Level Relationship (Ethanol Long-run 
Forcing) 

Panel (a): Constant 

 Jan.1987-Mar.2012 Jan.1987-Jun.2005 Jul.2005-Mar.2012 

 p,q F-test p,q F-test p,q F-test 

Price Index 1 (Excl. Cattle) 1, 1 2.88(a) 1, 1 6.09(c) 1, 1 2.45(a) 
Price Index 2 (Incl. Cattle) 1, 1 2.11(a) 1, 1 5.96(c) 1, 1 0.57(a) 
Corn 1, 1 2.22(a) 1, 1 3.16(a) 2, 1 0.77(a) 
Soybeans 1, 1 2.40(a) 1, 1 3.96(a) 1, 1 0.40(a) 
Wheat 1, 1 4.41(a) 1, 1 3.66(a) 1, 1 2.51(a) 
Cattle 3, 1 5.19(b) 3, 1 3.27(a) 1, 1 4.85(a) 

Panel (a): Constant and Trend 

 Jan.1987-Mar.2012 Jan.1987-Jun.2005 Jul.2005-Mar.2012 

 p,q F-test p,q F-test p,q F-test 

Price Index 1 (Excl. Cattle) 1, 1 3.35(a) 1, 1 6.08(a) 1, 1 1.93(a) 
Price Index 2 (Incl. Cattle) 1, 1 1.97(a) 1, 1 6.15(a) 1, 1 1.48(a) 
Corn 1, 1 2.18(a) 1, 1 3.04(a) 2, 1 2.39(a) 
Soybeans 1, 1 2.81(a) 1, 1 3.63(a) 1, 1 1.01(a) 
Wheat 1, 1 4.26(a) 1, 1 3.64(a) 1, 1 1.00(a) 
Cattle 3, 1 6.62(b) 3, 1 3.65(a) 1, 1 6.26(a) 
Notes: the null hypothesis of the bound F-test is of no level relationship. (a) indicates that the statistics lies below 
the 0.05 lower bound (i.e. the null is not rejected), (b) that it falls within the 0.05 bounds (i.e. the test is
inconclusive), and (c) that it lies above the 0.05 upper bound (i.e. the null is rejected). The asymptotic critical 
value bound for the F-statistic is [4.94, 5.73] for the case with constant and [6.56, 7.30] for the case with constant
and trend; see Pesaran and Shin (2001), Table CI(iii) and CI(v). 
 

Table 6: F-statistics for Testing the Existence of a Level Relationship (Commodity i 
Long-run Forcing) 

Panel (a): Constant 

 Jan.1987-Mar.2012 Jan.1987-Jun.2005 Jul.2005-Mar.2012 

 p,q F-test p,q F-test p,q F-test 

Price Index 1 (Excl. Cattle) 2, 1 4.17(a) 2, 1 6.25(c) 1, 1 5.71(b) 
Price Index 2 (Incl. Cattle) 2, 1 4.85(a) 2, 1 6.68(c) 1, 1 7.70(c) 
Corn 2, 1 3.11(a) 2, 1 4.75(a) 1, 2 9.30(c) 
Soybeans 2, 1 3.22(a) 2, 1 4.66(a) 1, 1 5.58(b) 
Wheat 2, 1 4.30(a) 2, 1 5.25(b) 1, 1 7.17(c) 
Cattle 2, 1 6.44(c) 1, 1 11.70(c) 1, 1 7.92(c) 

Panel (a): Constant and trend 

 Jan.1987-Mar.2012 Jan.1987-Jun.2005 Jul.2005-Mar.2012 

 p,q F-test p,q F-test p,q F-test 

Price Index 1 (Excl. Cattle) 2, 1 6.88(b) 2, 1 7.57(c) 1, 1 8.84(c) 
Price Index 2 (Incl. Cattle) 2, 1 6.45(a) 2, 1 7.85(c) 1, 1 19.53(c) 
Corn 2, 1 6.52(a) 2, 1 6.34(a) 1, 2 9.53(c) 
Soybeans 2, 1 6.09(a) 2, 1 6.22(a) 1, 1 5.81(a) 
Wheat 2, 1 7.31(c) 2, 1 6.75(b) 1, 1 7.44(c) 
Cattle 2, 1 7.90(c) 1, 1 12.59(c) 1, 1 13.32(c) 
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Table 7: OLS Estimates and Granger Causality Test Models (Ethanol Price Models) 

  Const Ethanol AR(1) GC 

Price Index (Excl. Cattle) 0.13   0.01   0.18 ** 0.12 

Price Index (Incl. Cattle) 0.04   0.03   0.20 *** 1.64 

Corn 0.06   -0.06 * 0.47 *** 3.23 

Soybeans 0.04   -0.07 *** 0.44 *** 7.23 

Wheat 0.06   0.03   0.29 *** 1.04 

Cattle 0.12   0.01   0.30 *** 0.25 
Notes: Equations (2) in the paper. The dependent variables are listed in column (1). OLS estimates are show in 
columns (2)-(4). "Ethanol" is the lagged value of the first log difference of the ethanol price, "AR(.)" denotes 
the first lag of the dependent variable and "GC" is the Granger Causality test. (*), (**), (***) denote rejection 
of the null hypothesis at the 10%, 5% and 1%, respectively. 
 

Table 8: Parameter Instability and Granger Causality Test (Ethanol Price Models) 

Panel (a): Andrew's QLR Test for Instabilities 

 

Price Index 
(Excl. 
Cattle) 

Price Index 
(Incl. 

Cattle) Corn Soybeans Wheat Cattle 
QLR Test 9.65 9.76 6.59 2.78 7.33 3.57 
Break Date       

Panel (b): Rossi's Granger Causality (Exp-W*) Test Robust to Instabilities 

 

Price Index 
(Excl. 
Cattle) 

Price Index 
(Incl. 

Cattle) Corn Soybeans Wheat Cattle 
Exp-W* 
Test 2.36 4.45 2.68 4.17 1.52 0.72 
Notes: (*), (**), (***) denote rejection of the null hypothesis at the 10%, 5% and 1% levels, respectively. For 
the QLR test the null hypothesis is that parameters are stable; the Exp-W* test is a joint test of stability and no 
Granger Causality. These tests involves both constant and the lagged first difference of (log) ethanol price. The 
dependent variables are reported as column headers. They refer to equations (2) in the paper. When the QLR test 
rejects the null hypothesis we report the time of the break (i.e. mm/yyyy) below the value of the statistic. 
Rejection of the Exp-W* null hypothesis indicates evidence in favour of Granger Causality. 
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Table 9: OLS Estimates and Granger Causality (GC) Test Models (Commodities Price 
Models) 

Model Const AR(1) 

Price 
Index 
(Excl. 
Cattle)

Price 
Index 
(Incl. 

Cattle) Corn Soybeans Wheat Cattle GC 

Price Index 
(Excl. 
Cattle) 0.08 0.24*** 0.07      1.35 
Price Index 
(Incl. 
Cattle) 0.04 0.25***  0.07     0.05 
Corn 0.07 0.24***   0.21***    7.62***
Soybeans 0.08 0.24***    0.21**   6.49** 
Wheat 0.08 0.25***     0.03  0.20 
Cattle 0.03 0.25***      0.07 0.16 
Multivariate 0.05 0.24***   0.11 -0.08 0.24***  1.96 
Multivariate 
(incl. cattle) 0.04 0.24***   0.12 -0.09 0.07 0.24*** 1.48 
Notes: Equations (3)-(5) in the paper. The dependent variable is "Ethanol", while explanatory variables are shown 
as column headers. OLS estimates are show in columns 2-8. "Ethanol" is the first log difference of ethanol price, 
"AR(.)" denotes the first lag of "Ethanol" and "GC" is the Granger Causality test. The remaining explanatory 
variables the lagged value of the first difference of the log price of the variables in column headers. (*), (**), 
(***) denotes rejection of the null hypothesis at the 10%, 5% and 1%, respectively. 

 

Table 10: Parameter Instability and Granger Causality test (Commodities Price 
Models) 

Panel (a): Andrew's QLR Test for Instabilities 

Model 

 

Price 
Index 
(Excl. 
Cattle) 

Price 
Index 
(Incl. 

Cattle) Corn Soybeans Wheat Cattle Multivariate 

Multivariate 
(including 

Cattle) 

QLR Test 9.15 4.26 12.45* 10.84 5.55 6.17 11.98 15.54 

Break 
Date   06/1991      

Panel (b): Rossi's Granger Causality (Exp-W*) Test Robust to Instabilities 

Model: 

Price 
Index 
(Excl. 
Cattle) 

Price 
Index 
(Incl. 

Cattle) Corn Soybeans Wheat Cattle Multivariate 

Multivariate 
(including 

Cattle) 

Exp-W* 
Test 1.91 1.00 5.48 4.87 1.41 3.96 6.08 10.49* 

Notes: (*), (**), (***) denote rejection of the null hypothesis at the 10%, 5% and 1%, respectively. For the QLR 
test the null hypothesis is that parameters are stable; the Exp-W* test is a joint test of stability and no Granger 
Causality. These tests involves both the constant and the lagged first difference of all explanatory variables 
excluding the lagged value of "Ethanol". The dependent variable "Ethanol" is the first difference of the log price 
of ethanol. The columns corresponds to equations (3)-(5) in the paper. When the QLR test rejects the null 
hypothesis we report the time of the break (i.e. mm/yyyy) below the value of the statistic. Rejection of the Exp-
W* null hypothesis indicates evidence in favour of Granger Causality. 



 33

 

Table 11: Mean Squared Forecast Error and Encompassing Test (Ethanol Price 
Models) 

Benchmark 

Price 
Index 

(Excl. 
Cattle) 

Price 
Index 

(Incl. 
Cattle) Corn Soybeans Wheat Cattle 

AR(1) 1.01 0.32* 0.66 -0.43** 0.66 1.22 
Random Walk (RW) 0.89 0.40 1.92 0.20 1.17 0.85 
RW with Drift 0.83 -0.09** 1.23 -0.24* 0.74 0.69 
Notes: Figures in the table are the Mean Squared Forecast Error differential (rescaled by their sample 
standard deviation). A positive number indicates that the benchmark is on average more accurate than the 
forecast of the model including "Ethanol". The models refer to equation (2) in the paper. When the 
benchmark is either the RW or the RWD, the models do not include the lagged value of the dependent 
variables. Asterisks (*), (**), (***) denote rejection of the null hypothesis of the Enc-New encompassing test 
at the 10%, 5% and 1% significance level, respectively. Critical value of the test are from Clark and 
McCracken (2000). A rejection indicates that the model is better than the benchmark. 

 

Table 12: Mean Squared Forecast Error and Encompassing Test (Commodities Price 
Models) 

Benchmark 

Price 
Index 

(Excl. 
Cattle) 

Price 
Index 

(Incl. 
Cattle) Corn Soybeans Wheat Cattle 

Multiva
riate 

Multiva
riate 
(incl. 
cattle) 

AR(1) 0.17 2.22 -0.87** -0.78** 1.39 1.36 -0.02* 0.30* 

Random Walk (RW) 0.44 2.76 -0.78** -0.63** 1.33 1.89 0.17 0.51 

RW with Drift 0.09 2.06 -0.96** -0.75** 1.22 1.42 0.02* 0.36* 
Notes: Figures in the table are the Mean Squared Forecast Error differential (rescaled by their sample standard 
deviation). A positive number indicates that the benchmark is on average more accurate thatn the forecast of 
the model. The models refer to equations (3)-(5) in the paper. When the benchmark is either the RW or the 
Random Walk with drift, Models 7-14 do not include the lagged value of the first difference of the log price of 
ethanol. Asterisks (*), (**), (***) denote rejection of the null hypothesis of the Enc-New encompassing test at 
the 10%, 5% and 1% significance level, respectively. Critical value of the test are from Clark and McCracken 
(2000). A rejection indicates that the model is better than the benchmark. 
 

 


