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Abstract: An important tool in order to carry out research for modeling and managing energy demand 
and supply is explaining variables with measures reflecting weather variations. For example, handlings 
with heating degree-days represent an easy way to account for almost 100% of natural gas consumption 
variations. Setting-up a linear model is a standard way to proceed but when the data under exam is other 
than linearly associated, that’s to say jointly Normal distributed, correlation is no longer a measure of 
dependence and interpreting it as such is both theoretically and practically erroneous. In this context, 
statistical theory proposes a powerful tool, named copula function, to model flexible multivariate 
distributions in order to describe alternative dependence structures with respect to standard ones. The aim 
of the paper is to check whether heating degree-days are a consistent linear predictor for natural gas 
consumptions. In this context, a case study is developed on a monthly average of heating degree-days and 
monthly (residential and total) natural gas consumption volumes. Estimation results on alternative 
Archimedean copulas confirm that there is not sufficient evidence supporting a symmetric association 
with respect to the range of value variables can jointly assume. The statistical model to be used in this 
type of analysis should be robust against deviation from joint Normality and nesting linearity as a special 
case.  
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1. Climate determinants: heating degree-days 

Temperature fluctuation is a major determinant in energy economics. In literature, most analysis takes into 
account the influence of temperature measures in order to estimate in-sample and forecasted patterns of 
energy demand and supply. Valor et al. (2001) investigate in the power sector the relationship between 
electricity loads and daily air temperatures using a population-weighted temperature index. Among the other 
results, it accounts for a significant nonlinear relation. This confirms the approach adopted in Engle et al. 
(1992) where the authors describe an exogenous impact of weather, expressed in a nonlinear formulation. 
Another interesting case study is presented in Franco and Sanstad (2008), which estimate the relationships 
between temperature and electricity consumption and peak demand, with respect to a group of locations 
around California. Results are used to predict future impact of climate changes using projected regional 
climate changes. The analysis of Timmerman and Lamb (2007) is in line with a vast number of studies, 
focused on the relationship between (winter) temperatures and residential energy consumptions. Authors 
develop two different temperature measures and test the maximum correlation with natural gas residential 
consumption; the analysis includes distinct areas of the United States with respect to a monthly and a 
seasonal time scale. In Gallanti et al. (2006) natural gas demand scenarios are designed for the Italian 
system, processing heating degree days and consumption volumes. In particular, for any time frequency the 
authors derive a crucial measure that is a “gradient of consumption” built as the ratio between volumes and 
heating degree days. 

Heating degree-days (HDD) represents a simple way to keep weather data in a time series framework. 
Roughly speaking, they easily express the concept of "volume of cold", that is defined as the net exposure of 
a land, in a specific time period, to air temperature variations over a standard level, evaluated as an amount 
of degrees. From a theoretical point of view, as well as fundamental in applicative works, HDD are largely 
defined and studied in many disciplines, spanning from civil and mechanical engineering (Samo and Beng; 
1999, Büyükalaca et al.; 2001), environment and  energy research and management (Sarak and Satman; 
2003, Gallanti et al.; 2006, Timmer and Lamb; 2007). Regarding a geographic area, numerical values of 
HDD are given by sum, over a period of interest (month or year), of positive daily differences between a 
conventional referencing temperature and the average external temperature. Following that, by construction, 
low values on HDD specify short cooling periods and average daily temperatures very close to country’s 
benchmark. Conversely, high values indicate long periods of severe cooling conditions, denoted by average 
daily temperatures which are much lower than the conventional temperature reference.  

In formula, heating degree days are defined by: 
 

 

��� = ���� − �	
�
�

	
�
 (1.1) 

 
with: 
 

� N : Length of the time horizon (number of days); 
� ��: Conventional temperature.  
� �	: Average temperature.  
� + Sign denote that the sum is over nonnegative values. 

 
Values for �� and �	 are generally ruled by law. For what concerns ��, according to the Eurostat calculation 
method, the quantity is fixed in 18 Celsius degrees (18°C). The sum is over �	′� lower than or equal to 15°C. 
Note that country-specific legislation can establish different values, like 15.5°C. In Italy the threshold is set 
at 20°C. Average temperature �	 is given by half the distance between maximum and minimum outdoor 
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temperature. In Italy, it is obtained by the mean between four distinct temperatures: maximum, minimum, the 
temperature read at 8 a.m. and the one reading at 7 p.m. The sum is over the whole season in which the 
average external temperatures are lower than 12°C. 

It is then obvious that the temperature is a key determinant of natural gas consumptions; and this remark 
is certainly enforced by looking at residential components. However, it is not clear that the basic analytical 
set up should be a linear relation between natural gas consumptions and heating degree-days. At least, it 
would be tested. In fact, whenever running a simple OLS regression, standard approach assumes Y (say, 
natural gas consumptions) and X (say, heating degree-days) following a joint Normal distribution. That 
allows asymptotics on parameter estimators to work; but, as will be ruled out later, modeling as Normally 
shaped variates which exhibit non-Normal distributional behavior is more than just a theoretical mistake. It is 
well known how linear dependence, that is correlation, makes sense as an association structure only in a 
multivariate Normal framework. Out of Normality (univariate and consequently multivariate), correlation no 
longer represents a dependence structure and any measure based on correlation can lead to misleading results 
in term of association among variables. That’s the case of Pearson’s correlation, maybe the most employed 
measure of dependence in statistics.  

This paper tests the common approach of explaining natural gas consumption through a linear relation 
with temperature as measured by heating degree-days. Evidence from the distributional characteristics of a 
dataset about Italy, lead to a preference of a more cautious approach that would be robust against deviation 
from Normality. In other words, an extension from linear relations to the concept of functional relations is 
required. This implies that it is possible to search for a more suitable way to model the structure of 
dependence which is the joint data generating process. This role can be played by copula functions. After 
discussing their general features, in the following section, it will be clear how, through a very simple 
framework, many interesting and more appropriate remarks can be made about dependence between HDD 
and natural gas consumption. This will be supported by an application. Finally general comments on policy 
implication for the Italian gas system will be presented. 

2. Copula functions and limits of linear dependence 

I . The birth of copula function dates very far in the past, but along the last two decades, their use increased in 
many fields of science; spanning from economics to engineering sciences (Genest and Rivest; 1993, 
Embrechts et al.; 2003, Cherubini, Luciano and Vecchiato; 2004, Dupuis; 2007). Joe (1997) and Nelsen 
(1999) give a complete overview on what copulas are and how they work: 

 
Definition 1 (Copula function). Let � = [0,1]. A 2-dimensional copula (2-copula) is a mapping  �: �� → �  
such that: 
a. For any ��, �
 ∈ �� : 
 

� ���, 0
 = 0 = ��0, �
 
� ���, 1
 = �;   ��1, �
 = � 

 
b. For any  ��, ��, ��, �� ∈ � such that  �� ≤ ��; �� ≤ ��: 
 

� #$�[��, ��] × [��, ��]
 = ����, ��
 − ����, ��
 − ����, ��
 + ����, ��
 ≥ 0 
 
denoting  with  #( the  �-volume measured over the rectangle with vertices ��, ��, ��, ��  � 
 

Theorem 1 (Sklar’s): Let �), *
 be a bivariate real-valued random vector on a common probability space 
�Ω, ,, ℘
, with joint cumulative distribution function (cdf) ��., /
 and continuous univariate margins ,�.
 
and 0�/
. There exists a unique copula � such that: 
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��., /
 = ��,�.
, 0�/

 (2.1) 

 
given any ., / ∈ 1  (real axes) �  
 
 
Corollary 1. Given a 2-copula  ���, �
, the following equation holds: 
 

���, �
 = ��, 2���
, 0  2���

 (2.2) 
 

� 
 

Given the continuity condition on marginals, because of Theorem 1 and Corollary 1, a joint cdf can be 
factorized in a unique representation in terms of copula. Conversely, if � is a copula, and , and 0 are 
continuous univariate cdf’s, � it is a bivariate joint cdf. Therefore, given the copula structure of a certain 
joint cdf, large alternative distributions can be modeled just keeping , and 0 fixed and by varying the 
copula. Viceversa, identity (2.1) shows the possibility of isolating, at least theoretically, the underlying 
copula in any joint (continuous) cdf. Finally, noting that the probability integral transform defines a couple 
of Uniform �0,1
 random variables, say U and V, can be observed that: 

 
���, �
 = Pr �5 ≤ �, # ≤ �
 (2.3) 

 
which shows how a copula � induces a probability measure on the metric space �6, or simply, � is nothing 
but a joint cdf with standard Uniform margins. Furthermore, given that (2.3) can be obtained from any 
guessed functional form for , and 0, it follows that copulas are not affected by “marginal behaviors”, 
playing as a factor that completely and uniquely governs the dependence structure among variables.     
 
Definition 2 (Archimedean copula). Let 7: 8 → [0, ∞] be a continuous strictly decreasing function such that 

7�1
 = 0 and 7[2�] the pseudo-inverse of 7. Further, let the function �: �� → � be given by the relation:1
1 
 

���, �
 = 7[2�]�7��
, 7��

 (2.6) 
 
for any  �, � ∈ �. If 7 is a convex function, � is a copula called Archimedean, while 7 is defined generator 
function of  �  � 
 

Notice that the parameters’ value uniquely determines the shape of the generating function, as well as the 
functional form of the copula and characteristic of dependence it describes (Genest and Favre; 2007). A 
deeper focus on Archimedean copulas can be visually appreciated in Figure 2.1. Note that, as the value of the 
parameters increase towards positive values, copulas define a tighter positive association between data, 
reaching, asymptotically, the exact functional relation expressed by the identity �: = ;��, �
. They show an 
analogue of behaviors for negative values, except for Gumbel-H which, by construction, describes only 
positive degrees of association.  

 
 

                                                           
1
 For 7�0
 = ∞, implying 7[2�] = 72�, then 7 is defined strict generator and � is a strict Archimedean copula (Nelsen; 

1999). 
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Figure 2.1: Scatterplots of 300 bivariate observations generated from Archimedean copulas on I 2  

Clayton �< = 0.2
 Gumbel-H �< = 1.1
 Frank �< = −15
 

   
Clayton �< = 2.5
 Gumbel-H �< = 2.5
 Frank �< = 0.5
 

   
Clayton �< = 5
 Gumbel-H �< = 5
 Frank �< = 15
 

   
 
The shape of the generator functions also accounts for the independence copula. Finally, observe that far 

from independence, Gumbel-H copula stands as a framework for heavier dependence on upper tail values 
(upper-right quadrant), while lower tails in the case of Clayton (lower-left quadrant). Frank copula is 
symmetric going from upper to lower tail values. 

 
Theorem 2. Let  �  be an Archimedean copula with generator function 7  and let: 
 

@(��; <
 = #(��; <
AB��, �
 ∈ �6: �:��, �
 ≤ �CD 
 
then for all � ∈ �: 
 

@(��; <
 = � − 7��

7E��
 (2.7) 
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� 
 
Equation (2.7) is crucial because it shows how, with Archimedean copulas, any F-dimensional problem 
should be reduced to a univariate one, through a simple 1-dimensional cdf describing the random variable 
(5, #
. Efficacy will be clear in the evaluation of the dependence measure called Kendall’s G, that will be 
discussed later in the paper. 
 
Corollary 2. If � is an Archimedean copula with generator 7, �5, #
 a random vector with joint distribution 
�; then the function in (2.7) is the distribution function of the variable ��5, #
.  � 
 
III . Pearson’s linear correlation coefficient, says H is successfully employed as an indicator of dependence, 
mainly for its simple evaluation and scale-independence property. But its relevant drawbacks are well-
known. Being a cross-product moment function, H completely depends on marginal distributions. In the case 
of multivariate Normal distributions (elliptical as a general case), marginals, of any dimension, are always of 
the same form, up to a linear transformation. Thus, Pearson’s correlation describes nothing more than what 
kind of linear relation links the two variables. The more variables deviate from the condition of linear 
linkage, the more H loses the wider meaning of measure of dependence. In addition, it is a function of 
moments, and for some standard distributions H it is forced to be undetermined or misleading. That’s the 
case, whenever the absolute moment’s existence condition is no longer verified.2 

A solution can be found in nonparametric measures of concordance, such as, among the others, Kendall’s 

τ, Spearman’s ρ or Gini co-graduation index. In this context, for a matter of convenience, attention will be 
paid to the first one. Since it can be evaluated through the probability of concordance and discordance 
Nelsen (1999) states the following: 
 
Theorem 3. Let ) and * be continuous random variables whose copula is �. Then the population version of 
Kendall’s  G for ) and * and is given by: 
 

G �), *
 = 4 J ���, �
 d���, �

�L

− 1 (2.8) 

 
� 
 
Thus notice, that when the underlying copula is Archimedean with generator 7 Genest and Rivest (1993) 
prove that: 
 

G �), *
 = 1 + 7��

7E��
 d� (2.9) 

 
Finally, handling with generators, Genest and Favre (2007) derive: 
 

� Clayton: G �), *
 = < �< + 2
⁄ ;   < ≥ −1 
 

� Gumbel: G �), *
 = �< − 1
 <;⁄    < ≥ 1 
 

� Frank:  G �), *
 = 1 − 4 <⁄ + 4 ���<
/<; < ∈ 1  
 

                                                           
2 See, among the others, Vitali (1999). 
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 with:  ���<
 = O P
:

:
Q �RP − 1
2� d. (first order Debye function) 

 
These relations are crucial in order to derive an estimation technique, which shares the rationale of a moment 
based procedure, independent from marginal distributions (Genest and Rivest; 1993). 

In an inferential problem on a copula set-up, the starting point is to focus on a sample analog which 
shares the same invariance property. Pairs of ranks associated with any sample couple, �S�, T�
… �SU, TU
, 
meet that requisite (Genest and Favre; 2006). Note that by normalizing ranks on a factor 1 �F + 1
⁄ , one gets 
a set of points on � which form the domain of the empirical distribution counterparts of , and 0, say ,U and 
0U That formally defines the empirical copula: 

 

�U��, �
 = 1
F � V W S	

F + 1 ≤ �, T	
F + 1 ≤ � XU

	
�
 (2.10) 

 
with V{∙} the indicator function. �U is the probability distribution that puts a mass 1 F⁄  on each point of the 
rank plot. Following the fact that inference for any copula-based measure of association mimics the same 
approach via the empirical copula �U. In other terms, given that G = \��
 it follows that  GU = \��U
. 
Genest and Favre (2007) show that under suitable regularity conditions �U → � as F increases, assuring that 
GU is an asymptotically unbiased estimator of G. Further, being GU a U-statistic, it is asymptotically Normal. 
These are the basic properties to derive, by inverting formulas as derived by (2.9), a robust and easy 
moment-like estimation procedure for Archimedean copulas’ parameters as suggested in Genest and Rivest 
(1993). Whenever alternative Archimedean copula models have been estimated, goodness-of-fit testing 
should be run by the method based on the Kendall process discussed in Genest et al. (2009). 

3. Dependence features for natural gas consumption and heating degree days 

The data set is composed by two balanced time series for monthly average heating degree days and monthly 
natural gas residential and total consumption volumes, respectively from Eurostat and ENI – Snam Rete Gas. 
The sample size is 89 observations, covering the time frame from January/2003 to May/2010. For a deeper 
investigation of co-movements between temperature and natural gas consumption, it was split in two distinct 
samples representing colder and warmer months (say, “cold” and “warm” months). The first one was formed 
collecting observations from October to March, the second from April to September.  
 

Table 3.1: Dataset 

Variable  Symbol 

Heating degree-days (Celsius degree) HDD 
Residential natural gas consumption (G-m3) RES 
Total natural gas consumption (G-m3) TOT 
Heating degree-days – cold months (Celsius degree) HDD-C 
Residential natural gas consumption – cold months (G-m3) RES-C 
Total natural gas consumption – cold months (G-m3) TOT-C 
Heating degree-days – warm months (Celsius degree) HDD-W 
Residential natural gas consumption – warm months (G-m3) RES-W 
Total natural gas consumption – warm months (G-m3) TOT-W 
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Figure 3.1: Dataset 

HDD HHD-C HDD-W 

   
RES RES-C RES-W 

   
TOT TOT-C TOT-W 

   
   

 
 

Table 3.2: Summary statistics 

 Mean 
Standard 
deviation 

Kurtosis 
(excess) 

Asymmetry n 

 
HDD 

 
159.4930 

 
150.0114 

 
-1.482149 

 
0.3412381 

 
89 

RES 2620.387 1968.182 -1.295883 0.4957636 89 
TOT 6926.468 2118.985 -1.224119 0.3946046 89 
HDD-C 280.7531 107.6963 -0.3721586 -0.7540116 45 
RES-C 4219.453 1484.572 -0.6682637 -0.4980789 45 
TOT-C 8699.823 1434.825 -0.6671762 -02809184 45 
HDD-W 35.47707 55.31497 1.024112 1.597304 44 
RES-W 984.9786 509.6495 0.4587629 1.337684 44 
TOT-W 5112.809 652.3233 -0.5052863 0.05475134 44 
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Summary statistics and graphics for each dataset are reported in Table 3.2 and Figure 3.1. It is certainly 

not surprising to check how data are affected by a prominent seasonal component. That’s absolutely obvious 
thinking that temperature strictly depends on a natural sequence of seasons. Similarly, natural gas 
consumption, depending on temperature variations. Table 3.3 reports Pearson’s correlation index estimated 
with respect to each couple “heating degree days/gas consumptions”. The values confirm what intuition and 
literature suggests about a consistent and exceptionally strong correlation between such variables, above all 
in case of HDD vs RES. In addition, season-specific samples reflect the same structure of dependence, 
except for HDD vs TOT, for which correlation coefficient drops down to 0.6234. It can be argued that the 
effect of power generation and industrial consumption component, not properly temperature-related, 
significantly weakens the association between heating degree-days and total consumption whenever their 
relative weight tends to increase, particularly during warm months.  

 

Table 3.3: Pearson correlation index 

 Pearson’s rho p-value 

Overall correlation 
 
HDD / Residential 

0.9874 1.7234e-071 

HDD / Total 0.9643 
5.4261e-052 

 

Seasonal correlation 

 
HDD-C vs RES-C 

0.9729 5.5106e-029 

HDD-C vs TOT-C 0.9463 1.0415e-022 
HDD-W vs RES-W 0.9581 2.0045e-024 

HDD-W vs TOT-W 0.6234 
6.1859e-006 

 
 
 
As we noticed earlier, when two (or more) variables are not jointly normal, Pearson’s correlation fails to 

represent a measure of dependence. We can start by at least checking whether the data under examination 
can be assumed as drawn by a univariate Gaussian data generating process, recalling that a bivariate Normal 
has univariate Normal margins. Graphics in Figure 3.2 offer a first visual analysis of the distributional 
features of our data. Note that, in any case, Normal curves do not come out as an adequate fitting for the 
empirical distributions, both for lack of symmetries and for meso-kurtosis. This is confirmed by indexes 
reported in Table 3.2. Observe that a nonzero skewness coefficient denotes the presence of asymmetry, while 
the (excess of) kurtosis tails are thinner/fatter than the Gaussian distribution. For what concerns symmetries, 
distributions appear to be essentially right skewed in case of cold months and otherwise left skewed. Full 
time series reveal the prevalence of left-skewness for the unconditional distribution. This suggests how, in 
warm months, each variable showed lower variability over its range with respect to cold months, displaying 
a heavy mass of data points concentrated around lower values. In this case, that aspect can be essentially 
explained with the methodology described in (1.1) for HDD. For the measure of the “severity of coldness”, 
the measure’s support is mainly shifted towards cold temperatures. TOT-W can be considered as an 
exception, being not very far from a balanced shape around the mean. Also for what concern kurtosis, 
indexes suggest the presence of wider peaked distributions than the Gaussian. Exceptions emerge again from 
warm months: HDD-W and RES-W kurtosis index reveal higher probability (than a Normally distributed 
variable) to assume extreme values. 
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Figure 3.2: Empirical distributions VS Normal theoretical density 
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Symmetry and kurtosis indexes strictly depend on the sample’s 2nd, 3rd and 4th order unconditional 

moments. Anyway, deviation from Normality exhibited by the data is strongly confirmed through statistical 
testing. First of all, in Figure 3.3, standard Normal quantiles are plotted against empirical quantiles for each 
variable (Normal QQ-plots). Notice that in any case, scatterplots tend to assume “anomalous” patterns in 
correspondence of upper and lower tails. It is extremely clear for HDD, RES and TOT. In HDD-W and RES-
W that the distance is very large approaching the upper tail. Finally, in Table 3.4 two traditional Normality 
tests are performed. Regarding Jarque and Bera test, the null hypothesis of a Normal DGP is strongly 
rejected for HDD, RES, HDD-W and RES-W. In the case of TOT the null is weakly rejected (5%). For RES-
C and TOT-C there is insufficient evidence to suggest the rejection of a Gaussian DGP. Distinct and clearer 
results are obtained by running a Kolmogorov-Smirnov test over a Gaussian benchmark. In every case, the 
null is not statistically supported.  
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Figure 3.3: Normal QQ-Plots 
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Table 3.4: Normality tests 

 Jarque-Bera Test 
(H0: Normal) 

Kolmogorov-Smirnov Test 
(H0: Normal) 

 
Test-statistic p-value Test-statistic 

p-value  
(two-sided) 

 
HDD 

 
9.5562 

 
0.008412 

 
0.8745 

 
2.2e-16 

RES 9.6302 0.008106 1.0000 1.665e-15 
TOT 7.5838 0.02255 1.0000 1.665e-15 
HDD-C 4.6798 0.09634 1.0000 6.661e-16 
RES-C 2.5806 0.2752 1.0000 6.661e-16 
TOT-C 1.221 0.5431 1.0000 6.661e-16 
HDD-W 22.7456 1.150e-05 0.7680 2.2e-16 
RES-W 14.7674 0.0006213 1.0000 6.661e-16 
TOT-W 0.2994 0.861 1.0000 6.661e-16 
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Figure 3.4: Scatterplots on real values 

RES vs HDD TOT vs HDD 

  
RES-C vs HDD-C TOT-C vs HDD-C 

  

RES-W vs HDD-W TOT-W vs HDD-W 

  
 
Analysis provided so far suggests that a general explanatory model of natural gas consumptions against 

heating degree-days should, at least, nest linear relations as a special case. However, in general there is 
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days, cannot be ruled out as bivariate Normal distributions describing a correlation-based structure of 
dependence between the couple. A flexible alternative, as explained, can be reached with a copula 
framework. In Figure 3.4 and 3.5 scatterplots on real axes and an empirical copula domain are compared. 

 

Figure 3.5: Scatterplots on standardized ranks values 

RES vs HDD TOT vs HDD 

  
RES-C vs HDD-C TOT-C vs HDD-C 

  

RES-W vs HDD-W TOT-W vs HDD-W 

 
 

 
As can be seen in the latter, each sample shows distinct association profiles. In the case of full ones, data 
points seem to be strictly associated around average values in each domain, becoming sparser on upper-right 
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quadrant values. That is even more evident in the case of TOT vs HDD. Concerning season-based samples, 
interesting comments can be made. Observe that in cold months, there seems to be a functional relation 
linking natural gas consumptions and heating degree-days characterized by a clustering on the upper-right 
side values, both for RES as for TOT; whereas in warm seasons the clustering concerns the lower left ones. 
In TOT-W vs HDD-W the cloud is definitively going to approximate an independent relation between 
variables. Estimation results and diagnostics reported in Table 3.5 support and strengthen the visual 
assessment: Frank copula is never the best model to fit unconditional bivariate distributions between natural 
gas consumptions and heating degree-days; that’s to say the joint behavior between variables is nowhere as 
symmetric along the range of values but strictly depends on whether heating degree-days assume low or high 
values. Clayton was selected in case of both full and warm month’s samples. This advises for an explanatory 
power of HDD for RES and TOT decreasing as values of variables increase. The opposite is true in the case 
of cold months, when natural gas consumptions and heating degree-days appear to be related by a functional 
relation that becomes tighter and tighter as values increase (Gumbel-H copula). This somehow confirms the 
aforementioned apparent prevalence of the warm month’s variables joint behavior with respect to the whole 
year. 

In conclusion, there is no reason to assume a linear relation linking heating degree-days and natural gas 
consumptions. Reduction of natural gas consumptions caused by a drop in the severity of coldness results to  
an asymmetricity with an increase in consumptions caused by an increase in the severity of coldness. It 
follows that a 1% of temperature variation does not always necessarily induce an x% in natural gas 
consumptions. It strictly depends on the season in which variations occur together with the magnitude of 
temperature rigidity. In particular, cold months seem to be characterized by a tighter relation between high 
volumes of consumptions and high severity. Alternatively, in warm periods, the more heating degree-days 
increase, the more natural gas consumption variations follow other determinants than just the temperature. 
 

Table 3.5: Copula models estimation 

 
Kendall-τ 

Clayton Gumbel-H Frank 
 Est. GoF Est. GoF Estimate GoF 
 
RES vs HDD 

 
0.8751 

 
14.0128 

 
3.4112e-4 

 
8.0064 

 
8.8510e-4 

 
30.2862 

 
4.4588e-4 

TOT vs HDD 0.7893 7.4922 5.3773e-4 4.7461 0.0020 17.1615 0.0011 
RES-C vs HDD-C 0.8505 11.3779 0.0014 6.6890 5.9242e-4 24.9950 6.3412e-4 
TOT-C vs HDD-C 0.8040 8.2041 0.0016 5.1020 3.3331e-4 18.6037 5.7784e-4 
RES-W vs HDD-W 0.6586 3.8582 6.4003-e4 2.9291 0.0022 9.7381 00.16 
TOT-W vs HDD-W 0.4197 1.4465 0.0013 1.7232 0.0024 4.4389 0.0023 
        

4. Closing remarks 

A suitable procedure to explain energy variables through temperature variations needs to be based on a 
deeper examination of the structure of association describing the multivariate phenomenon. Given that, in 
any case the latter seems to not be a core issue, it follows in the literature we rarely encounter an alternative 
framework and then a linear representation. This is certainly intuitive and easy, but relevant mistakes are 
well known whenever some fundamental conditions do not hold. A crucial one is that linear relations arise in 
the context of multivariate Normal DGP’s (elliptical in general). Otherwise, associations between variables 
should be analyzed under the wider framework of functional relations, because forcing the model to linear 
relations can produce misleading results. A simple way to avoid this mistake is to use copula modeling, 
whose advantages have been already discussed from a theoretical point of view. Even though they reached a 
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strong popularity, copula functions are still a work in progress for which pros and cons have sparked a vivid 
debate.3  

This paper focused on the nature of the relationship linking heating degree-days to natural gas 
consumption for the Italian energy system. Analysis pointed out that at least multinormality is not statically 
significant to describe the joint behavior of the couple. A set of a 1-parameter Archimedean copula have 
been tested: Clayton, Gumbel-H and Frank. The choice had been guided by a double reason: they provide a 
very simple but rigorous estimation procedure and represent each kind of all relevant association features. 
Estimation outcomes suggest how the nature of the relationship linking natural gas consumptions to heating 
degree-days essentially accounts for many sources of asymmetries. The main one is that intensity of positive 
association between natural gas volumes and heating degree-days strictly depends on whether temperature 
variations occur in cold or warm months. Cold months are likely to show a tighter association between 
variations on high values with respect to variations occurring on low values. The opposite happens in the 
case of a warm month. Of course, this evidence is stronger in the case of a residential withdrawal. It can be 
concluded that a 1% of temperature variation does not always necessarily induce an x% in natural gas 
consumptions. It strictly depends on the season in which variations occur together with a magnitude of 
temperature rigidity. In particular, cold months seem to be characterized by a tighter relation between high 
volumes of consumptions and high severity. Alternatively, in warm periods, the more heating degree-days 
increase, the more natural gas consumption variations follow other determinants rather than the temperature. 

This can be considered a useful result in order to drive decision-making processes on a vast range of 
energy management branches; from pricing on the spot and forward markets to supply investment planning, 
in addition with supporting (indirectly) how improving interventions on the efficiency of domestic dwellings 
should be effective. 
From a scientific point of view, the topic, not discussed in literature, can be subject to a future development. 
The highlighted “overall” copula dependence can be certainly extended in a time varying context, through a 
dynamic copula model (Patton; 2006). In this sense, the aim is investigating basic determinants of both short 
and long range relationships, trying to add key features for a more general theory and technique about 
temperature filtering on energy variables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
3 See for example the large discussion launched by Mikosch (2006), which actually counts 10 replies and a rejoinder. 
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