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Abstract: An important tool in order to carry out reseafoh modeling and managing energy demand
and supply is explaining variables with measurdiectng weather variations. For example, handlings
with heating degree-days represent an easy wagcmuat for almost 100% of natural gas consumption
variations. Setting-up a linear model is a standeagl to proceed but when the data under exam &r oth
than linearly associated, that's to say jointly Maf distributed, correlation is no longer a measafre
dependence and interpreting it as such is bothrefieally and practically erroneous. In this comfex
statistical theory proposes a powerful tool, nanoegula function, to model flexible multivariate
distributions in order to describe alternative dejmnce structures with respect to standard onesairh

of the paper is to check whether heating degres-dag a consistent linear predictor for natural gas
consumptions. In this context, a case study isldeeel on a monthly average of heating degree-dags a
monthly (residential and total) natural gas constimnp volumes. Estimation results on alternative
Archimedean copulas confirm that there is not sigfit evidence supporting a symmetric association
with respect to the range of value variables camtljoassume. The statistical model to be usedis t
type of analysis should be robust against devidtiom joint Normality and nesting linearity as aesjal
case.
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1. Climate determinants: heating degree-days

Temperature fluctuation is a major determinantnergy economics. In literature, most analysis takés
account the influence of temperature measuresderaio estimate in-sample and forecasted pattefrns o
energy demand and supply. Valorat (2001) investigate in the power sector the reteship between
electricity loads and daily air temperatures usingppulation-weighted temperature index. Amongatier
results, it accounts for a significant nonlinedatien. This confirms the approach adopted in Eralal.
(1992) where the authors describe an exogenouscingbaveather, expressed in a nonlinear formulation
Another interesting case study is presented inderamd Sanstad (2008), which estimate the reldtipas
between temperature and electricity consumption @eek demand, with respect to a group of locations
around California. Results are used to predictréutimpact of climate changes using projected reajion
climate changes. The analysis of Timmerman and L&007) is in line with a vast number of studies,
focused on the relationship between (winter) temjpees and residential energy consumptions. Authors
develop two different temperature measures andthesmaximum correlation with natural gas residgnti
consumption; the analysis includes distinct arelathe United States with respect to a monthly and a
seasonal time scale. In Gallanti &t (2006) natural gas demand scenarios are desifymetthe Italian
system, processing heating degree days and consmmwaiumes. In particular, for any time frequeribg
authors derive a crucial measure that is a “gradiéconsumption” built as the ratio between volsnaad
heating degree days.

Heating degree-days (HDD) represents a simple waieep weather data in a time series framework.
Roughly speaking, they easily express the condepiotume of cold", that is defined as the net exyo@ of
a land, in a specific time period, to air tempematvariations over a standard level, evaluatednasnaount
of degreesFrom a theoretical point of view, as well as funéaial in applicative works, HDD are largely
defined and studied in many disciplines, spanniognfcivil and mechanical engineering (Samo and Beng
1999, Buyukalaca etl.; 2001), environment and energy research and geament (Sarak and Satman;
2003, Gallanti e@l.; 2006, Timmer and Lamb; 2007). Regarding a geddcaarea, numerical values of
HDD are given by sum, over a period of interest rithoor year), of positive daily differences between
conventional referencing temperature and the aeeeaternal temperature. Following that, by consimag
low values on HDD specify short cooling periods awrage daily temperatures very close to country’s
benchmark. Conversely, high values indicate longpds of severe cooling conditions, denoted by ager
daily temperatures which are much lower than theventional temperature reference.

In formula, heating degree days are defined by:

N
HDD = ) (f—t)* (1.1)
2

with:

= N: Length of the time horizon (number of days);

= t: Conventional temperature.

= t;: Average temperature.

= + Sign denote that the sum is over nonnegativeegalu

Values fort andt; are generally ruled by law. For what concerpaccording to the Eurostat calculation
method, the quantity is fixed in 18 Celsius degi@&SC). The sum is oveg's lower than or equal to 15°C.
Note that country-specific legislation can estdblisiferent values, like 15.5°C. In Italy the thne&d is set
at 20°C. Average temperatute is given by half the distance between maximum mniwimum outdoor
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temperature. In Italy, it is obtained by the meatween four distinct temperatures: maximum, minimtira
temperature read at 8 a.m. and the one readingpan.7The sum is over the whole season in which the
average external temperatures are lower than 12°C.

It is then obvious that the temperature is a kdgrdginant of natural gas consumptions; and thisarkm
is certainly enforced by looking at residential gmments. However, it is not clear that the basalydital
set up should be a linear relation between natymal consumptions and heating degree-days. At lgast,
would be tested. In fact, whenever running a sinles regression, standard approach assum@say,
natural gas consumptionapnd X (say, heating degree-days) following a joint Ndrrdestribution. That
allows asymptotics on parameter estimators to wouk; as will be ruled out later, modeling as Ndiyna
shaped variates which exhibit non-Normal distriboél behavior is more than just a theoretical rrist#t is
well known how linear dependence, that is correfgtimakes sense as an association structure ordy in
multivariate Normal framework. Out of Normality (wariate and consequently multivariate), correlathm
longer represents a dependence structure and aagunecbased on correlation can lead to misleadisigts
in term of association among variables. That'sdase of Pearson’s correlation, maybe the most graglo
measure of dependence in statistics.

This paper tests the common approach of explainatgral gas consumption through a linear relation
with temperature as measured by heating degree-8aijdence from the distributional characteristidsa
dataset about Italy, lead to a preference of a roauwtious approach that would be robust againdatien
from Normality. In other words, an extension fromekr relations to the concept of functional relasi is
required. This implies that it is possible to skafor a more suitable way to model the structure of
dependence which is the joint data generating geocEhis role can be played by copula functiongerAf
discussing their general features, in the followsegtion, it will be clear how, through a very slenp
framework, many interesting and more appropriatearks can be made about dependence between HDD
and natural gas consumption. This will be suppobigén application. Finally general comments origyol
implication for the Italian gas system will be pFated.

2. Copula functions and limits of linear dependence

I. The birth of copula function dates very far ie fiast, but along the last two decades, theirngeased in
many fields of science; spanning from economicsengineering sciences (Genest and Rivest; 1993,
Embrechts etl.; 2003, Cherubini, Luciano and Vecchiato; 2004 piig; 2007). Joe (1997) and Nelsen
(1999) give a complete overview on what copulasaakhow they work:

Definition 1 (Copula function) LetI = [0,1]. A 2-dimensional copula (2-copula) is a mappigl? — I
such that:

a. For any(u,v) € I? :

* C(u,0)=0=C(0,v)
» C(u,)=u; C(Lv)=v

b. For any u,,u,,v,,v, € I such thatu; < u,; v; < vy:
= Ve([ug, up] X [vy,v2]) = C(up, v2) — C(up,v1) — C(uy,v5) + C(ug,v1) =0
denoting withV, the C-volume measured over the rectangle with vertiges,, v,,v, B

Theorem1 (Sklar’'s): Let(X,Y) be a bivariate real-valued random vector on a comrpmbability space
(Q, F, ), with joint cumulative distribution function (cdf)(x, y) and continuous univariate margiigx)
andG (y). There exists a unique copulasuch that:
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H(x,y) = C(F(x),G(y)) (2.1)

given anyx,y € R (real axes

Corollary 1 Given a 2-copulaC (u, v), the following equation holds

Clu,v) = H(F "Y(w),G "1(v)) (2.2)

Given the continuity condition on marginals, be@o$ Theorem 1 and Corollary 1, a joint cdf can be
factorized in a unique representation in terms a@duta. Conversely, i€ is a copula, and and G are
continuous univariate cdf'g{ it is a bivariate joint cdf. Therefore, given thepala structure of a certain
joint cdf, large alternative distributions can b@daled just keeping’ and G fixed and by varying the
copula. Viceversa, identity (2.1) shows the po$igibdf isolating, at least theoretically, the unigag
copula in any joint (continuous) cdf. Finally, najithat the probability integral transform defirsesouple
of Uniform (0,1) random variables, say andV, can be observed that:

Clu,v) =Pr(U<u,V <v) (2.3)

which shows how a copula induces a probability measure on the metric sgacer simply,C is nothing

but a joint cdf with standard Uniform margins. fetmore, given that (2.3) can be obtained from any
guessed functional form faf and G, it follows that copulas are not affected by “magd behaviors”,
playing as a factor that completely and uniquelyegos the dependence structure among variables.

Definition 2 (Archimedean copula)Letg: I — [0, o] be a continuous strictly decreasing function suwdt t
(1) = 0 and![~! the pseudo-inverse of. Further, let the functiorC: I? — I be given by the relatioh

Cw,v) = o (o), (v)) (2.6)

for any u,v € I. If ¢ is a convex functior; is a copula called Archimedean, whiteis defined generator
function of C W

Notice that the parameters’ value uniquely deteesitihe shape of the generating function, as wehas
functional form of the copula and characteristicdeppendence it describes (Genest and Favre; 2807).
deeper focus on Archimedean copulas can be visapflyeciated in Figure 2.1. Note that, as the vafube
parameters increase towards positive values, coplddine a tighter positive association betweera,dat
reaching, asymptotically, the exact functional tielaexpressed by the identi€y = M (u, v). They show an
analogue of behaviors for negative values, exceptGumbel-H which, by construction, describes only
positive degrees of association.

LFor¢(0) = o, implying =1 = ¢~1, theny is defined strict generator afds a strict Archimedean copula (Nelsen;
1999).
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Figure 2.1: Scatterplots of 300 bivariate observatins generated from Archimedean copulas oh?
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The shape of the generator functions also accdante independence copula. Finally, observe fidvat
from independence, Gumbel-H copula stands as aefwank for heavier dependence on upper tail values
(upper-right quadrant), while lower tails in theseaof Clayton (lower-left quadrant). Frank copua i
symmetric going from upper to lower tail values.

Theorem2. Let C be an Archimedean copula with generator functoand let
Kc(t:0) = Vet 0)[{(wv) € I%: Co(u,v) < t}]
then for allt € I

o)

Kc(t;0)=t— o' (0

(2.7)



Equation (2.7) is crucial because it shows howhwAtchimedean copulas, amydimensional problem
should be reduced to a univariate one, throughmplei 1-dimensional cdf describing the random vaeiab
(U, V). Efficacy will be clear in the evaluation of thepndence measure called Kendatl'shat will be
discussed later in the paper.

Corollary 2 If C is an Archimedean copula with generatar(U, V) a random vector with joint distribution
C; then the function in (2.7) is the distributiométion of the variabl€ (U, V). &

lll . Pearson’s linear correlation coefficient, sayis successfully employed as an indicator of depeoé,
mainly for its simple evaluation and scale-indeerw property. But its relevant drawbacks are well-
known. Being a cross-product moment functiorcompletely depends on marginal distributions hie ¢tase
of multivariate Normal distributions (elliptical @sgeneral case), marginals, of any dimensionalarays of
the same form, up to a linear transformation. TiResgrson’s correlation describes nothing more tilaext
kind of linear relation links the two variables. ellmore variables deviate from the condition of dine
linkage, the more- loses the wider meaning of measure of dependdncaddition, it is a function of
moments, and for some standard distributipris is forced to be undetermined or misleading. tEhthe
case, whenever the absolute moment’s existencetmmis no longer verified.

A solution can be found in nonparametric measufesicordance, such as, among the others, Kendall's
1, Spearman’g or Gini co-graduation index. In this context, Bomatter of convenience, attention will be
paid to the first one. Since it can be evaluatedubh the probability of concordance and discordanc
Nelsen (1999) states the following:

Theorem 3 LetX andY be continuous random variables whose copul@ i$hen the population version of
Kendall's 7 for X andY and is given hy

T(X,Y) =4 ﬂlz C(u,v) dC(u,v) — 1 (2.8)

Thus natice, that when the underlying copula istinredean with generatgr Genest and Rivest (1993)
prove that:

p(t)
@'(t)

T(X,Y)=1+ de (2.9)

Finally, handling with generators, Genest and F§087) derive:

= Clayton: T(X,Y)=6/(6+2); 0=>-1
=  Gumbel: T(X,Y)=(0-1)/6; 60=>1
*  Frank: T(X,Y)=1-4/6+4D,(0)/6; 6 ER

2 See, among the others, Vitali (1999).



with: Dy (8) = [} 2

(e* — 1)1 dx (first order Debye function)
These relations are crucial in order to derive gtim@&tion technique, which shares the rationale wioment
based procedure, independent from marginal digtabsi (Genest and Rivest; 1993).

In an inferential problem on a copula set-up, tteting point is to focus on a sample analog which
shares the same invariance property. Pairs of rasg&sciated with any sample couglR;, S;)... (R, S»n),
meet that requisite (Genest and Favre; 2006). tateby normalizing ranks on a factbf(n + 1), one gets
a set of points o which form the domain of the empirical distributioaunterparts of andG, sayF, and
G, That formally defines the empirical copula:

C(u,v)=lzn 1{ Ri _5 <v} (2.10)
n ndui-y (n+1~ "n+1°"

with 1{-} the indicator functionC,, is the probability distribution that puts a mags: on each point of the
rank plot. Following the fact that inference foryactbpula-based measure of association mimics tiree sa
approach via the empirical copulg. In other terms, given that= f(C) it follows that t,, = f(C,).
Genest and Favre (2007) show that under suitagldasty conditionsC,, — C asn increases, assuring that

T, IS an asymptotically unbiased estimator ofurther, being,, aU-statistic, it is asymptotically Normal.
These are the basic properties to derive, by imgerformulas as derived by (2.9), a robust and easy
moment-like estimation procedure for Archimedeaputas’ parameters as suggested in Genest and Rivest
(1993). Whenever alternative Archimedean copula efsoodhave been estimated, goodness-of-fit testing
should be run by the method based on the Kendadlesss discussed in Genesalet(2009).

3. Dependence features for natural gas consumpti@nd heating degree days

The data set is composed by two balanced timesskrignonthly average heating degree days and ryonth
natural gas residential and total consumption vesymespectively from Eurostat and ENI — Snam Betg
The sample size is 89 observations, covering the frame from January/2003 to May/2010. For a deepe
investigation of co-movements between temperatndenatural gas consumption, it was split in twdidcs
samples representing colder and warmer months ‘@alg’ and “warm” months). The first one was forthe
collecting observations from October to March, skeond from April to September.

Table 3.1; Dataset

Variable Symbol
Heating degree-days (Celsius degree) HDD

Residential natural gas consumption (&-m RES

Total natural gas consumption (G)m TOT

Heating degree-days — cold months (Celsius degree) HDD-C
Residential natural gas consumption — cold mor@sa) RES-C
Total natural gas consumption — cold months &-m TOT-C
Heating degree-days — warm months (Celsius degree) HDD-W
Residential natural gas consumption — warm mor@hs) RES-W
Total natural gas consumption — warm months ((-m TOT-W




Figure 3.1: Dataset
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Table 3.2: Summary statistics
Mean Standgrd Kurtosis Asymmetry n
deviation (excess)

HDD 159.4930 150.0114 -1.482149 0.3412381 89
RES 2620.387 1968.182 -1.295883 0.4957636 89
TOT 6926.468 2118.985 -1.224119 0.3946046 89
HDD-C 280.7531 107.6963 -0.3721586 -0.7540116 45
RES-C 4219.453 1484.572 -0.6682637 -0.4980789 45
TOT-C 8699.823 1434.825 -0.6671762 -02809184 45
HDD-W 35.47707 55.31497 1.024112 1.597304 44
RES-W 984.9786 509.6495 0.4587629 1.337684 44
TOT-W 5112.809 652.3233 -0.5052863 0.05475134 44




Summary statistics and graphics for each datasetegiorted in Table 3.2 and Figure 3.1. It is ¢elta
not surprising to check how data are affected pyominent seasonal component. That's absolutelyoolsv
thinking that temperature strictly depends on aumstsequence of seasons. Similarly, natural gas
consumption, depending on temperature variationbleT3.3 reports Pearson’s correlation index eséicha
with respect to each couple “heating degree dagsigasumptions”. The values confirm what intuitaord
literature suggests about a consistent and execgpifostrong correlation between such variablesyalall
in case of HDD vs RES. In addition, season-spedéimples reflect the same structure of dependence,
except for HDD vs TOT, for which correlation coeféint drops down to 0.6234. It can be argued tnat t
effect of power generation and industrial consumptcomponent, not properly temperature-related,
significantly weakens the association between hgatiegree-days and total consumption whenever their
relative weight tends to increase, particularlyiggizvarm months.

Table 3.3: Pearson correlation index

Pearson’s rho p-value
Overall correlation
HDD / Residential 0.9874 1.7234e-071
HDD / Total 0.9643 5.4261e-052
Seasonal correlation
HDD-C vs RES-C 0.9729 5.5106e-029
HDD-C vs TOT-C 0.9463 1.0415e-022
HDD-W vs RES-W 0.9581 2.0045e-024
HDD-W vs TOT-W 0.6234 6.1859e-006

As we noticed earlier, when two (or more) varialdes not jointly normal, Pearson’s correlationddi
represent a measure of dependence. We can stattlbgst checking whether the data under exammatio
can be assumed as drawn by a univariate Gausdagel@erating process, recalling that a bivariadanil
has univariate Normal margins. Graphics in Figur2 @fer a first visual analysis of the distributad
features of our data. Note that, in any case, Nbomeves do not come out as an adequate fittingHer
empirical distributions, both for lack of symme#iand for meso-kurtosis. This is confirmed by iretex
reported in Table 3.2. Observe that a nonzero skssvooefficient denotes the presence of asymnwelrile
the (excess of) kurtosis tails are thinner/fatt@ntthe Gaussian distribution. For what concernsnsstries,
distributions appear to be essentially right skewedase of cold months and otherwise left skevirad.
time series reveal the prevalence of left-skewresshe unconditional distribution. This suggestshin
warm months, each variable showed lower variabditgr its range with respect to cold months, digpta
a heavy mass of data points concentrated arounerlgalues. In this case, that aspect can be esbgnti
explained with the methodology described in (1d)HIDD. For the measure of the “severity of coldvigs
the measure’s support is mainly shifted towardsd deimperatures. TOT-W can be considered as an
exception, being not very far from a balanced shameind the mean. Also for what concern kurtosis,
indexes suggest the presence of wider peakedndistms than the Gaussian. Exceptions emerge &gam
warm months: HDD-W and RES-W kurtosis index rev@égher probability (than a Normally distributed
variable) to assume extreme values.



Figure 3.2: Empirical distributions VS Normal theoretical density
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Symmetry and kurtosis indexes strictly depend am shmple’s % 3° and 4" order unconditional
moments. Anyway, deviation from Normality exhibitey the data is strongly confirmed through statasti
testing. First of all, in Figure 3.3, standard Natmuantiles are plotted against empirical quasite each
variable (Normal QQ-plots). Notice that in any gaseatterplots tend to assume “anomalous” pattierns
correspondence of upper and lower tails. It isem#ly clear for HDD, RES and TOT. In HDD-W and RES-
W that the distance is very large approaching fheeuotail. Finally, in Table 3.4 two traditional Nhoality
tests are performed. Regarding Jarque and Berathestnull hypothesis of a Normal DGP is strongly
rejected for HDD, RES, HDD-W and RES-W. In the ca6&@OT the null is weakly rejected (5%). For RES-
C and TOT-C there is insufficient evidence to ssggke rejection of a Gaussian DGP. Distinct amdrer
results are obtained by running a Kolmogorov-Smirtest over a Gaussian benchmark. In every case, th
null is not statistically supported.
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Figure 3.3: Normal QQ-Plots
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Table 3.4: Normality tests

Jarque-Bera Test
(Ho: Normal)

Kolmogorov-Smirnov Test
(Ho: Normal)

p-value

Test-statistic p-value Test-statistic (two-sided)
HDD 9.5562 0.008412 0.8745 2.2e-16
RES 9.6302 0.008106 1.0000 1.665e-15
TOT 7.5838 0.02255 1.0000 1.665e-15
HDD-C 4.6798 0.09634 1.0000 6.661e-16
RES-C 2.5806 0.2752 1.0000 6.661e-16
TOT-C 1.221 0.5431 1.0000 6.661e-16
HDD-W 22.7456 1.150e-05 0.7680 2.2e-16
RES-W 14.7674 0.0006213 1.0000 6.661e-16
TOT-W 0.2994 0.861 1.0000 6.661e-16
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Figure 3.4: Scatterplots on real values
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Analysis provided so far suggests that a genenalaeatory model of natural gas consumptions against
heating degree-days should, at least, nest lirdations as a special case. However, in genera tise
strong evidence confirming how conditional disttibo of natural gas consumptions given heating ekegr
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days, cannot be ruled out as bivariate Normal ibigions describing a correlation-based structure o
dependence between the couple. A flexible altereatas explained, can be reached with a copula
framework. In Figure 3.4 and 3.5 scatterplots @b a&es and an empirical copula domain are compared

Figure 3.5: Scatterplots on standardized ranks vales
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As can be seen in the latter, each sample showinatiassociation profiles. In the case of full sndata
points seem to be strictly associated around ageralyes in each domain, becoming sparser on ufer-
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guadrant values. That is even more evident in &se ©of TOT vs HDD. Concerning season-based samples,
interesting comments can be made. Observe thablth raonths, there seems to be a functional relation
linking natural gas consumptions and heating dedess characterized by a clustering on the uppgt-ri
side values, both for RES as for TOT; whereas imwseasons the clustering concerns the lower tefs.0
In TOT-W vs HDD-W the cloud is definitively going tapproximate an independent relation between
variables. Estimation results and diagnostics rtepgoin Table 3.5 support and strengthen the visual
assessment: Frank copula is never the best modielutaconditional bivariate distributions betweeatural
gas consumptions and heating degree-days; thasaytthe joint behavior between variables is noelser
symmetric along the range of values but strictlgatels on whether heating degree-days assume lbiglor
values. Clayton was selected in case of both fudl\@arm month’s samples. This advises for an exay
power of HDD for RES and TOT decreasing as valdespables increase. The opposite is true in #eec
of cold months, when natural gas consumptions aatirig degree-days appear to be related by a éunadti
relation that becomes tighter and tighter as vaine®ase (Gumbel-H copula). This somehow confitimes
aforementioned apparent prevalence of the warm lerariables joint behavior with respect to theokeh
year.

In conclusion, there is no reason to assume arlireation linking heating degree-days and natges
consumptions. Reduction of natural gas consumptiansed by a drop in the severity of coldness tesul
an asymmetricity with an increase in consumptiomssed by an increase in the severity of coldnéss. |
follows that a 1% of temperature variation does abtays necessarily induce a®o in natural gas
consumptions. It strictly depends on the seasowhith variations occur together with the magnitude
temperature rigidity. In particular, cold month&iseto be characterized by a tighter relation betw@gh
volumes of consumptions and high severity. Alteuady, in warm periods, the more heating degreesday
increase, the more natural gas consumption vangfilow other determinants than just the tempreat

Table 3.5: Copula models estimation

Kendall Clayton Gumbel-H Frank
1 Est. GoF Est. GoF Estimate GoF
RES vs HDD 0.8751 14.0128 3.4112e-4 8.0064 8.8510e-4 30.2862 4.4588e-4
TOT vs HDD 0.7893 7.4922 5.3773e-4 4.7461 0.0020 .1€615 0.0011

RES-C vs HDD-C 0.8505 11.3779 0.0014 6.6890 5.9242e 24.9950 6.3412e-4
TOT-C vs HDD-C 0.8040 8.2041 0.0016  5.1020 3.3381e-18.6037 5.7784e-4
RES-W vs HDD-W 0.6586 3.8582 6.4003-e4 2.9291 (@002 9.7381 00.16
TOT-W vs HDD-W 0.4197 1.4465 0.0013 1.7232 0.0024 .4389 0.0023

4. Closing remarks

A suitable procedure to explain energy variablesuh temperature variations needs to be based on a
deeper examination of the structure of associaliescribing the multivariate phenomenon. Given thmat,
any case the latter seems to not be a core igdiodlpivs in the literature we rarely encounteraternative
framework and then a linear representation. Thiseigainly intuitive and easy, but relevant mistalase

well known whenever some fundamental conditionsalohold. A crucial one is that linear relationsarin

the context of multivariate Normal DGP’s (elliptida general). Otherwise, associations betweerabées
should be analyzed under the wider framework otftional relations, because forcing the model tedn
relations can produce misleading results. A sinwpdg to avoid this mistake is to use copula modeling
whose advantages have been already discussed file@ortical point of view. Even though they reathe
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strong popularity, copula functions are still a wor progress for which pros and cons have spaakedid
debate’

This paper focused on the nature of the relatigndliking heating degree-days to natural gas
consumption for the Italian energy system. Analygigited out that at least multinormality is natstally
significant to describe the joint behavior of thmuple. A set of a 1-parameter Archimedean copule ha
been tested: Clayton, Gumbel-H and Frank. The ehloéd been guided by a double reason: they pravide
very simple but rigorous estimation procedure agqtasent each kind of all relevant associationufeat
Estimation outcomes suggest how the nature ofetaionship linking natural gas consumptions totinga
degree-days essentially accounts for many soufcasymmetries. The main one is that intensity cfifpe
association between natural gas volumes and hedéigeee-days strictly depends on whether temperatur
variations occur in cold or warm months. Cold maenére likely to show a tighter association between
variations on high values with respect to variagi@tcurring on low values. The opposite happertfen
case of a warm month. Of course, this evidenc&amger in the case of a residential withdrawatahh be
concluded that a 1% of temperature variation domsatways necessarily induce a®o in natural gas
consumptions. It strictly depends on the seasowhith variations occur together with a magnitude of
temperature rigidity. In particular, cold month&iseto be characterized by a tighter relation betw@gh
volumes of consumptions and high severity. Alteuady, in warm periods, the more heating degreesday
increase, the more natural gas consumption vamsifimlow other determinants rather than the tesupee.

This can be considered a useful result in ordedriee decision-making processes on a vast range of
energy management branches; from pricing on theasmbforward markets to supply investment planning
in addition with supporting (indirectly) how imprioyg interventions on the efficiency of domestic tlimgs
should be effective.

From a scientific point of view, the topic, notdissed in literature, can be subject to a futuxeldpment.
The highlighted “overall” copula dependence cartbeainly extended in a time varying context, tlyloa
dynamic copula model (Patton; 2006). In this setimeaim is investigating basic determinants ohistitort

and long range relationships, trying to add keyuess for a more general theory and technique about
temperature filtering on energy variables.

% See for example the large discussion launched iipddh (2006), which actually counts 10 replies andjoinder.
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