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Abstract

Electricity demand is modeled as a time-varying parameters (TVP) vector au-

toegression with or without imposing cointegration. The paper applies Bayesian

strategies where all or a part of the parameters are allowed to vary, and compares

their forecasts performances with alternative time series models, namely a seasonal

ARIMA (SARIMA) specification and a vector error correction model (VECM). Con-

sidering Italian data, the appropriate diagnostic tests and estimation results are in

favour of non-stability of the parameters. However, the forecasts abilities of the

models do not show significant differencies when measured by RMSE and MAE,

and compared trough the Diebold Mariano statistic. On the other hand, forecast

intervals of Bayesian models show higher empirical coverage rates.
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filtering, Markov Chain Monte Carlo.
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1 Introduction

Considerable attention has been devoted to the analysis and forecast of electricity con-

sumption by researchers and pratictioners in the past several decades.

In early works, the estimation of electricity demand had been done by simultaneous

structural equation models (e.g.Fisher and Kayser, 1962). Subsequently VAR and, since

the papers by Engle and Granger (1987) and Engle et al. (1989), ECM models had be-

come the standard techniques for electricity demand analyses. Further developments

have relied on the use of Johansen (1988, 1995) method for estimating the long run

relationship, while some attempts have adopted alternative approaches that increase

the flexibility of the modelling strategies. For instance, Joutz et al. (1995) have used a

Bayesian specification that allows to account for researcher’s priors, while Chang and

Martinez-Chombo have introduced a time varying parameters (TVP) specification to

capture the evolution of the parameters over time.

Despite the big amount of studies on electricity, a much smaller number of attemps

provide an explicit comparison of the forecasting performances of differnt models and

none of them, at least among published works and to my knowledge, refers to the Ital-

ian market. There is therefore the need to quantify how, and to what extent, forecasts

are sensible to the choice of the modeling strategy.

In the present study BVAR approaches with time varying parameters (TVP) and that

may include cointegrating relations are compared with alternative time series mod-

els, namely an univariate Seasonal ARIMA (SARIMA) specification and a Vector Error

Correction Model (VECM). The first model gives flexibility and exploits all available

information explicitly; the second approach is appealing for its simplicitly, and third

specification has become standard practice among researchers, and therefore both the

last two provide natural benchmarks for comparison. By anticipating the results of this

study, despite their differences, the three models do not lead to remarkable differences

for forecasting aims.

These results are obtained using monthly Italian data for the period that spans from

January 1990 to February 2009. A basic electricity demand equation is used, where
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consumption is regressed on industrial production, two series that account for calendar

effects, proxies of the temperature, and eleven seasonal dummies.

Althought a demand equation is considered, prices are not included among the regres-

sors. The main reason relies on the monthly frequency of the data and the forecasts. In

the short run the demand of electricity and the possibility of switching to alternative

energy sources (e.g. natural gas and distillate fuel oil) are constrained by a fixed stock

of using appliances (see Silk and Jouts, 1997). Indeed, results from applied research

show, on average, moderate responsiveness of electricity consumption to changes in

prices (see among others: Engle et al., 1989; Filippini, 1999; and Fan and Hyndman,

2008, for a recent literature review.) Finally, an indication ‘ex-post’ of the validity of

omitting the prices is obtained by regressing the estimated residuals from the SARIMA

and VECM models on the logs of PUN baseload electricity prices1. The resulting coef-

ficient does not appear significant.

The remaining part of the paper is organized as follows: the next section analyses the

main features of the series and their integration properties; the models and estimations’

results are presented in section 3; section 4 discusses the forcasting performance of the

models, and section 5 concludes.

2 Data analysis and transformation

Electricity demand function is estimated using the logarithms of the electricity con-

sumption (el). As explanatory variables, the log-transformed industrial production

index (ip), cooling (CD) and heating (HD) degree days, two series that control for the

calendar effect (CA) and the leap year effect (LY ) are included in the models.2 The

1Monthly averages from 2005.1 to 2009.2 are used; an MA(3) term is added to correct for residual

correlation
2The reason for using IP (instead of alternative indicators, e.g. GDP) as income variable is primary

practical: while monthly records are provided for Italian industrial production, only quarterly data are

available for GDP. Second, electricity consumption is widely known to be a good predictor of GDP (in

other words the causal link is from electricity to GDP), while the causal relationship between electricity

and IP is in both directions.
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plots of the variables are reported below, while more precise definitions of the series

are given in the Appendix. Lower cases stand for log-transformation of the series.

(a) Logs of electricity demand (TWh), 1990.2 - 2009.2(b) Logs of industrial production (2000=100), 1990.2

- 2008.12

(c) Cooling degree days, 1990.2 - 2009.2 (d) Heating degree days, 1990.2 - 2009.2

Figure 1: Plot of series

As a first step of the analysis the presence of unit roots at seasonal as well as the zero

frequency is detected. Among the procedures that have been developped, the one of

OCSB (Osborn et al. 1988) and HEGY (Hylleberg et al. 1990) are employed here. The

former allows to test the adequacy of the double filter (1 − L) (1 − Ls); the latter tests

whether (1 − Ls) may be preferred to one of its components. Moreover, to investigate

whether these filters lead to improved forecasts, the predictive performance of univari-
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ate models based on alternative transformations of the series is considered.

The OCSB method considers the auxiliary regression:

φp (L) ∆1∆12yt =
12∑
s=1

δsds,t + π1∆12yt−1 + π2∆1yt−12 + εt (1)

where the order p of the polinomial φp (L) is chosen such that the estimated residuals

are approximately white noise. It holds that if π2 = 0 the filter ∆12 is appropriate, and

if π1 = π2 = 0 the double filter ∆1∆12 is needed. Table 1 shows the estimates of (1).

Variable lags t (π2) F (π1, π2)

el 1, 12 −6.895∗∗ 23.779∗∗

ip 1, 2, 5, 10 −3.232 6.903

Table 1: OCSB method; ∗∗ denotes significance at the .05 level; ‘lags’ refers to the

lagged ∆1∆12 variables included in the auxiliary regression

The second approach involves the HEGY regression, which in case of monthly data is

(see Franses, 1991):

φ (L) ∆12yt = µ+
11∑
i=1

γiDit + tt + ψ1y1t−1 + ψ2y2t−1 + ψ3y3t−1 +

+ ψ4y3t−2 + ψ5y4t−1 + ψ6y4t−2 + ψ7y5t−1 + ψ8y5t−2 +

+ ψ9y6t−1 + ψ10y6t−2 + +ψ11y7t−1 + ψ12y7t−2 (2)

where the auxiliary regressors are appropriately defined as in Franses (1998).

The component hypothesys ψ1 = 0, ψ2 = 0, ψ3 = ψ4 = 0, ψ5 = ψ6 = 0, ψ7 = ψ8 = 0,

ψ9 = ψ10 = 0, ψ11 = ψ12 = 0 correspond to separate tests for the unit roots contained

in the real valued (1 − L), (1 + L), (1 + L2), (1 + L+ L2),(1 − L+ L2),
(
1 + 31/2L+ L2

)
,(

1 − 31/2L+ L2
)

respectively.

The results of the test performed on the series el and ip are reported in Tables 2 and 3.
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Test t-stat F-stat

t1 -1.472

t2 -2.427*

w1 1.240

w2 5.259*

w3 2.448

w4 4.982*

w5 1.634

Table 2: HEGY method; variable el; no trend; ∗ and ∗∗ denote significance at the .10

and .05 level, respectively; critical values are reported in Franses(1991)

Test t-stat F-stat

t1 -2.963*

t2 -2.434*

w1 10.270**

w2 6.911**

w3 1.551

w4 11.224**

w5 1.523

Table 3: HEGY method; variable ip; trend; ∗ and ∗∗ denote significance at the .10 and

.05 level, respectively; critical values are reported in Franses(1991)

The results of the OCSB and HEGY tests, reported in Tables 1 - 3, suggest conflicting

interpretations of the type of seasonality in the series. To solve this apparent conflict

Table 4 and Table 5 report the one-step ahead and multi-step ahead forecasts of the

series. To evaluate the set of forecasts the observations from 1990m1 to 2003m12 are

used for the estimation and forecasts are generated for the sample 2004m1-1204m12.

The reason for choosing this sample is that the years next to 2004 registered temper-

atures abnormally high or low. The RMSE is the evaluation criterion. Only models
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that passed the tests on residuals autocorrelation are reported. For the series el, the

one-step ahead RMSE is smaller for the ARMA (1, 12; 1) model on the untrasformed

series; while for the multi-step ahead the same model on the differences of el has the

smallest RMSE. In contrast with the results for el, considering the series ip the model

for the variable transformed according to the HEGY test outperforms the other models

on both, one-step and multi-step ahead.

In sum, it may be concluded that a small number of imposed unit roots leads to better

forecasts for the variable el. Therefore, the (1 − L) filter is used for this variable in the

remaining of the paper. As for the variable ip the forecast evaluation and the HEGY

test (in contrast with the OCSB method) provide evidence of some seasonal unit roots.

In particular, according to the results of the HEGY test, ip should be substituted by

ip∗ =
(
1 − 31/2L+ L2

)
(1 − L+ L2) ip before analysing the cointegration between el

and ip∗. However, this filter does not seem to lead to good results in our particular

case, and it appears more opportune to treat this variable as integrated of order one at

the zero frequency only.

Filter Levels ∆1 ∆12 ∆1∆12

Model arma (1, 12; 1) arma (1, 12; 1) arma (2, 1) ma (1, 12, 13)

Determ. t,d d - -

1 − step .361 .390 .625 .392

h− step .375 .353 .726 .370

Table 4: Univariate models for electricity demand RMSE for 2004.1 - 2004.12; for

each filter the reported specification is the one that minimizes the BIC among those with

not significant LM of order 2; all RMSE refer to the original electricity demand series
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Variable Levels ∆1 ∆1 ∆1∆12

Model ar (1, 12) arma (1, 12; 1) ma (1, 12, 13) ma (1 − 5)

Determ. t,d d - -

1 − step 3.342 3.205 4.223 2.526

h− step 3.601 2.377 3.817 2.051

Table 5: Univariate models for industrial production RMSE for 2004.1 - 2004.12;

for each filter the reported specification is the one that minimizes the BIC among those

with not significant LM of order 2; all RMSE refer to the original industrial production

series

3 Modeling strategies

3.1 Preliminary methods

3.1.1 Univariate analysis

In the previous section it has been shown that the ARIMA(p = 1, 12; q = 1) specifi-

cation outperforms for modeling electricity consumption all other univariate model.

Estimation results are reported in Table 6.

3.1.2 Fixed coefficient VECM

Having assesed that series present unit roots, in this section the existence of cointe-

gration is checked for. In particular, the series of the electricity demand and the in-

dustrial production, which appear to be integrated at the zero frequency, may show

non-seasonal cointegration.

Adopting the method proposed in Johansen (1988), the starting point of the cointegra-

tion analysis is a VAR specification for the nx1 vector of I(1) variables Xt:

Xt = A1Xt−1 + . . .+ ApXt−p + ΨDt + ut (3)

where Dt contains deterministic components, and ut, is an nx1 i.i.d. Gaussian error
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V ariable Coefficient StdError

C -0.044** 0.006

∆el(−1) -0.446** 0.057

∆el(−12) 0.108** 0.042

D1 0.023** 0.005

D2 -0.053** 0.007

D3 0.024** 0.007

D4 -0.030** 0.010

D5 0.026** 0.013

D6 0.011 0.015

D7 0.004 0.017

D8 -0.218** 0.021

D9 0.022** 0.017

D10 0.119** 0.015

D11 0.017** 0.007

RU 0.002** 0.000

LY 0.043** 0.008

HD 0.006** 0.001

CD 0.013** 0.002

MA(1) 0.488** 0.085

R2 = 0.973 LM(4) = 1.747 LM(5) = 1.4

Table 6: SARIMA model - Estimation results; ∗ and ∗∗ denote significance at the .10

and .05 level, respectively

vector. Equation (3) can be reparametrized as:

∆Xt = ΠXt−1 + Π1∆Xt−1 + . . .+ Πp−1∆Xt−p+1 + ΨDt + ut (4)

where Π = − (In − A1 − . . .− Ap), Πi = − (In − A1 − . . .− Ai), i = 1, . . . , p − 1, which
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is the VECM representation of the original VAR system (see, among others, Charemza

and Deadman, 1992). If cointegration among the variables Xt is present, model (4) in-

cludes both long-run and short-run stationary components. The maximum likelihood

method by Johansen tests the presence of cointegration at the systems level by deter-

mining the rank of the long-run matrix, Π. If rankΠ = r, with 0 < r < n, the matrix

Π can be decomposed as Π = αβ′, where α, is an nxr matrix of adjustment parameters

and βis an nxr matrix containing the r cointegrating relations among the variables in

Xt−1. The Johansen approach enables to estimate the parameters β, and to assess the

number of I(0) linear combinations among the Xt variables.

In the present case, Xt consists in the logged electricity demand and industrial produc-

tion, whileDt includes a constant, the series that account for calendar and temperature

effects and seasonal dummies. As suggested in Johansen (1995), the dummies are or-

thogonalized on the constant 1/12, in such a way that they do not generate a trending

term. Since one cointegrating relationship is found among the variables, this is in-

cluded in the model that can be written in the VECM form3. The estimation results

related to electricity demand equation for the whole sample (1990.1 - 2008.12) are re-

ported in the Table 7. Based on diagnostic checks, the estimated specification appears

satisfactory.

3.1.3 Stability analysis

Over the last seventeen years the response of electricity consumption to its determi-

nants may have changed in several ways (see Bertoldi and Atanasiu, 2007). For ex-

ample, it is possible that an increase in summer temperatures (captured by the series

of CD) has a larger impact now than in 1990, and this could be due to the diffusion

of cooling appliances or, possibily, a changement in people’s utility function. Alter-

natively, the adgiustement to the long-run equilibrium may have varied over time, or

it could be the case for other factors. There are different types of tests for parameters

3The same variables appear in both equations. HD and CD shouldn’t be very helpful to predict

industrial production. However, the estimated coefficients are so small, that they may imply little dis-

torsion.
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Variable Coefficient StdError li

ect(−1) -0.218** 0.062 0.149

∆el(−1) 0.222** 0.073 0.124

∆ip(−1) -0.194** 0.031 0.052

∆el(−2) 0.223** 0.066 0.036

∆ip(−2) -0.141** 0.029 0.018

MA12el(−1) -0.395** 0.063 0.059

MA12ip(−1) 0.081** 0.030 0.191

d1 0.016** 0.007 0.046

d2 -0.071** 0.008 0.19

d3 0.081** 0.009 0.041

d4 -0.041** 0.011 0.091

d5 0.053** 0.012 0.1

d6 -0.010 0.016 0.205

d7 -0.004 0.018 1.051

d8 -0.273** 0.019 0.990

d9 0.049** 0.022 0.14

d10 0.093** 0.022 0.433

d11 0.067** 0.019 0.722

ru 0.002** 0.000 0.223

ly 0.035** 0.008 0.176

hd 0.004** 0.001 0.783

cd 0.013** 0.002 1.336

c -0.031** 0.006 0.255

R2 = 0.973 LM(5) = 3.178 LC = 8.235

Table 7: VECM Estimation results for electricity demand equation; li and LC stand for,

respectivey, the single coefficient and the cumulative results of Nyblom statistic; ∗ and ∗∗

denote significance at the .10 and .05 level, respectively
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Figure 2: Chow test sequence and relevant Andrews critical value

stability (see for example Marcellino, 2002). Here, the methods of Quandt (1960) and

Nyblom (1989) are adopted. The first tests the hypothesis of parameters stability (of the

demand equation) against the alternative of a single break at unknown date. In par-

ticular, the method of Quandt (1960) considers the maximum value of the Chow test

computed recursively for every possible breakdate4. The tests’ sequence is reported

in Figure (3.1.3) together with the opportune critical value (Andrews, 1993). As it ap-

pears from the graph, the sequence of Chow test lies above Andrew’s critical value at

several dates, suggesting instability of the parameters. Indeed, as it is possible that

this conclusion is distorted by the presence of seasonal dummies in the equation, the

test is repeated over series previously adjustded for seasonality. The results still reject

the null, and thus confirm the ropture with the hypothesis of parameters’ constancy.

Second, to better assess the nature of the instability a further method (Nyblom 1989,

Hansen 1992) that allows for breaks at unknown dates as well as random walks pa-

rameters is adopted.

Since the interest is in the dynamics of the VECM, the test is applied to the coefficients

of I(0) variables. In practice since the model is unrestricted and it includes exogenous

variables, it is estimated through a two-step procedure (1st step: cointegrating eq. Jo-

4As suggested in Hansen (2001) the top and bottom .15 of dates’ series is discarded
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hansen; 2nd step OLS). The second stages are re-estimated and Nyblom tests are per-

formed. The results for the electricity equation are shown in Table 7. According to the

above figures, the joint statistic rejects the null of stability at the 1 percent level. Single-

coefficients tests show instability due to the impact of Summer months (june-october),

HDD and CDD. The remaining variables appear more robust over the sample.

3.2 TVP - BVARs with or without cointegration

As above seen, the results of the stability tests suggest that coefficients may vary over

time. Here, (4) is replaced by:

∆Yt = BtXt + Et (5)

Bt = [A1t,Ωt] (6)

Xt =
(

∆Y
′

t−1, Zt

)′

(7)

where the evolution path of the parameters is defined as:

β̃t = Fβ̃t−1 + ηt (8)

β̃t = βt − β̄0 (9)

βt = vec
(
B

′

t

)
(10)

The regressors’ vector Xt has size (kX1), where k is given by the number of equations

times lags plus the rows’ number of Zt. The adopted approach is to treat (5) as a sim-

ple VAR model for ∆Yt, possibly augmented with the inclusion of the disequilibrium

term (previously estimated using classical techniques) as an additional regressor in a

Bayesian VAR framework (see Alvarez and Ballabriga, 1995; and Amisano and Serati,

1999). The vector Zt includes the seasonal dummies, the correctors for calendar effects,

the series HD and CD and may include the cointegrating vector.
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Equations (5) and (8) consitute the measurement and state equations of a state-space

representation, wich is the standard framework for estimating TVP models.

The error terms of the m observed yt and the K unobserved βt components are assumed

i.i.d. normal distributed, with E
(
ηtε

′
t

)
= 05. The parameters evolve as a random walk.

The prior for the initial state of the time-varying coefficients is Normal. The inverse

variance-covariance matrices of both, the measurement and the state, equations are

assumed to follow the Wishart distribution (conjugate priors). The matrix F in (8) is

set to be the identity matrix, that is the parameters follow a random walk6.

The sample is split in two parts. The first set of observations are used to calibrate the

parameters of the prior distributions. In particular, the mean and the variance of B0

are chosen to be the OLS point estimates on the initial subsample and their variances.

The degrees of freedom, νn and νβ , of the Wishart distributions are set to be, respec-

tively, 6 and 100 plus the dimension of each matrix7. The parameter νβ is chosen in

such a way to shrink the distribution of the parameters. The scale matrices are chosen

to be diagonal matrices, labeled Sn = knIt and Sβ = kβIz for the precision matrices of

the measurement and state equations. Table 8 summarize the hyperparameter of the

model.

The posterior distributions of the parameters are obtained by performing the Kalman

filter (forward recursion) and the smoothing techniques of Carter and Kohn (1994)

(backward recursion that allows to reconstruct the in sample evolution path of the βs

by using the complete set of the information). The final estimates of the states for the

electricity demand equation are reported in table 9 and table10. Selected time-varying

coefficients are reported in Figures 3 and 4.

5Here the var-cov matrix is assumed to be block-diagonal. Refer among others to Cogley and Sargent

(2001) and Amisano and Federico (2004) for examples of non block diagonal forms.
6Note that in model (5) - (8) the only source of variability are model’s coefficients, while the variance

and covariance matrix of the shocks is assumed constant over time (see Primiceri, 2005; and Cogley et

al. 2008 for a different approach on this point).
7The degrees of freedom exceed the dimension of the Wishart for both, the measurement and the

state, equations and therefore the inverse Wishart are proper.
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µ0 µOLS

Σ0 ΣOLS

νn m+6

νβ K+100

kn 10

kβ 106

Table 8: Hyperparameters

Figure 3: Evolution path of Cooling degree days’(CD) impact on electricity demand

growth. TVP BEC model
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Variable Coefficient Std.Error

ect(−1) -0.495** 0.126

∆el(−1) -0.012 0.167

∆ip(−1) -0.148** 0.066

∆el(−2) 0.129 0.124

∆ip(−2) -0.087* 0.048

MA12el(−1) -0.178* 0.105

MA12ip(−1) 0.030 0.037

d1 0.031** 0.013

d2 -0.040** 0.015

d3 0.075** 0.016

d4 -0.006 0.019

d5 0.062** 0.016

d6 0.024 0.023

d7 0.035 0.023

d8 -0.213** 0.031

d9 0.082** 0.045

d10 0.176** 0.044

d11 0.084** 0.037

ru 0.001 0.004

ly 0.036** 0.013

hd 0.008** 0.004

cd 0.015** 0.006

const -0.050** 0.012

Table 9: BECM Final estimates of the states, BT , and square roots of the corresponding

variances for the electricity demand equation; ∗ and ∗∗ denote significance at the .10 and

.05 level, respectively
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Variable Coefficient Std.Error

∆el(−1) -0.207 0.198

∆ip(−1) -0.096* 0.054

∆el(−2) -0.003 0.147

∆ip(−2) -0.022** 0.011

MA12el(−1) -0.263** 0.131

MA12ip(−1) 0.021 0.051

d1 0.017 0.021

d2 -0.067** 0.024

d3 0.054** 0.025

d4 -0.047 0.031

d5 0.055* 0.030

d6 0.016 0.037

d7 0.013 0.035

d8 -0.248* 0.044

d9 0.083 0.054

d10 0.124** 0.054

d11 0.047 0.045

ru 0.002 0.005

ly 0.005 0.026

hd 0.010** 0.005

cd 0.018** 0.009

c -0.070** 0.023

Table 10: BVAR Final estimates of the states, BT , and square roots of the corresponding

variances for the electricity demand equation; ∗ and ∗∗ denote significance at the .10 and

.05 level, respectively
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Figure 4: Evolution path of the constant term in the electricity consumption eq of the

TVP BECM

3.2.1 BVAR models with coefficients partly varying and partly constant

The need to estimate a large number of parameters can worsen the performance (par-

ticularly out-of-sample) of TVP-BVAR models in some empirical applications. In order

to reduce the dimension of paremeters space, equation (5) can be replaced by:

∆Yt = BtXt + ΓWt + εt (11)

where impacts of the variables in Wt are assuned constant over time.8 In practice, only

the coefficients with hightest evidence of instability are ellowed to vary: i.e. Xt in-

cludes the lagged dependent variables, D7, D8, the HD and CD, and the adjustements

to the equilibrium term. As in the unrestricted case, (11) is estimated through the multi-

move Gibbs sampling technique, a particular variant of MCMC algorithm that allows

to draw from the conditional posterior distribution instead of the high dimensional

8Alternatively, estimation strategies proposed to tighten the dimension of parameters matrix could be

used (see among others, Canova and Ciccarelli, 2004; and Canova, 2007; and Sims et al., 2006).
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joint posterior of the parameters. In the case in which the parameters are partly con-

stant and partly varying, Gibbs sampling is carried out in four steps, sampling firstly

from the posterior of the time-varying parameter, Bt, and in turn from the posterior of

the fixed coefficients, Γ, and finally of the precision matrices,Hε andHη, conditional on

the observed data and the rest of parameters. The final estimates are silmilar to those

reported in Table 9 and Table 10, and therefore are not reported.

4 Predictive ability comparison

The models presented in the previous section are now compared based on their predic-

tive ability. The performances are measured by the Root Mean Squared Error (RMSE)

and the Mean Absolute Error (MAE) computed over recursive samples. Relative com-

parison of forecasts is based on the Diebold Mariano statistic. 9

The forecasts are made as follows: the first set of forecasts are based on the models

estimated through data biginning in January 1990 and ending in December 1999. Using

this sample, dynamic predictions are made for the following twelve months. Then the

estimation period is extended up to January 2000, and predictions are generated for

the next months up to January 2001. This process of adding one year of observatios,

re-estimating, and forecasting up to twelve months ahead is repeated until January

2008 has been added to the estimation period .

Using this set forecasts, prediction errors are then computed and evaluated in two

ways. In tables 11 and 12 the performance of one-month, two-month up to twelve-

month ahead predictions is reported. Looking at tables’ results, imposing a bayesian

prior on the parameters and of allowing them (or a few of them) to vary over time does

not seem to lead to a remarkable advantages.10

From the figures in Tables 11 and 12 it appears that for one up to two months ahead

the univariate model has the largest forecasting accuracy. As the number of forecasted

9The parameters of the TVP-BVAR are considered constant for the forecasting period.
10These conclusion are not general; however the latter result is somehow supportive of the evidence

found by Joutz et al.(1995) using fixed coefficients BVAR for USA data.
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months increases the SARIMA performs badly, whereas forecasts by VECM and by

TVP BVAR models are similar, but slightly more accurate in case of VECM. This dif-

ference in accuracy diminishes for ten-month up to twelve-month forecasts. To restrict

some of the parameters of the TVP BVAR model to be constant over time does not

improve model’s performance; in fact this leads to slightly worse forecasts.

To conclude about the relative comparison of forecast accuracies the Diebold Mariano

statistic is used. Being di the loss function associated to model i the DM statistic as-

sesses whether the loss differential between the two competitive models differs from

zero. The test is given by:

S = d/ (2fd(0)/T ).5 (12)

where d is the average of loss function differentials and fd(0) is an estimate of loss

differentials’ asymptotic variance. The comparison of the VECM vs the BECM and the

VECM vs the BVAR model based on the DM statistic are presented in Table 13. The

Figures are obtained when the loss function is the RMSE; when the MAE is used the

results are very similar and then are not reported.

As expected, the results do not lead to the rejection, at conventional levels, of the hy-

pothesis of equal prediction errors.

Tables 11-13 provide absolute and relative measurements of forecasts accuracy that

are based on a large number of repetitions and statistically meaningful. However,

economic losses due to various forecasts errors are could not be easy interpretable by

comparing statistical measures (e.g. RMSE) or through statistical tests. To give a more

immediate view of the costs/benefits associates to the various models, the forecasts

in GWh and errors as percentages of the actual values for the years 2007-2009 11 are

reported in Table 14.

11Yearly forecasts are obtained as sum of monthly figures.

20



m SARIMA VECM TVP-BECM TVP-BVAR PartTVP-BECM PartTVP-BVAR

1 0.009 0.017 0.026 0.017 0.030 0.017

2 0.015 0.021 0.022 0.021 0.031 0.024

3 0.024 0.023 0.028 0.024 0.037 0.026

4 0.018 0.023 0.032 0.028 0.040 0.029

5 0.030 0.022 0.039 0.032 0.041 0.033

6 0.035 0.024 0.033 0.034 0.041 0.032

7 0.041 0.024 0.041 0.038 0.053 0.037

8 0.051 0.025 0.043 0.039 0.052 0.038

9 0.054 0.028 0.047 0.039 0.053 0.042

10 0.051 0.029 0.043 0.039 0.059 0.043

11 0.061 0.031 0.052 0.039 0.061 0.043

12 0.066 0.033 0.043 0.037 0.054 0.041

Table 11: RMSE for electricity demand - Dynamic forecasts over the period I : 2000.1−

2000.12...XCV III : 2008.2 − 2009.2, when the parameter are estimated for I : 1990.1 −

1999.12...XCV III : 1990.1 − 2008.1
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m SARIMA VECM TVP-BECM TVP-BVAR PartTVP-BECM PartTVP-BVAR

1 0.008 0.014 0.019 0.013 0.021 0.013

2 0.012 0.016 0.016 0.016 0.024 0.018

3 0.018 0.019 0.021 0.020 0.029 0.021

4 0.017 0.019 0.026 0.022 0.032 0.023

5 0.027 0.019 0.030 0.026 0.032 0.027

6 0.032 0.020 0.025 0.028 0.034 0.026

7 0.038 0.020 0.035 0.031 0.043 0.028

8 0.049 0.020 0.037 0.032 0.040 0.033

9 0.053 0.021 0.039 0.032 0.041 0.035

10 0.045 0.022 0.036 0.032 0.049 0.036

11 0.049 0.023 0.045 0.032 0.050 0.036

12 0.052 0.023 0.037 0.030 0.043 0.033

Table 12: MAE for electricity demand- see tab:RMSE

Now I consider the last three years and calculate what forecast errors would be made

by using the various models to forecast in December the demand over the next year.

The results show that the VTP-BECM, which allows for both evolving parameters and

adjustment toward the long-run lead level, leads to better economic decisions. For in-

stance, forecasting the demand in 2008 through the TVP-BECM instead of the VECM

would eliminate 90% of the error with relevant consequences (e.g. for plant manage-

ment, stock policy, price policies and budget preparation and control). Moreover, the

difference in the errors gets larger for 2008 and 2009 because more flexibility allows to

better capture the changes in the economic scenario. However, none of the models is

able to capture the deep shift of demand in 2009

In what precedes point forecasts have been the object of the analysis. Additional in-

teresting information can be gained from the evaluation of forecast intervals and cor-

responding empirical coverage rates. A series of 90% forecast intervals (5% and 95%

forecast quantiles) are calculated using recursive samples in the same fashion as above
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m VECM vs TVP-BVAR VECM vs TVP-BECM VECM vs PartTVP-BVAR

1 0.427 -0.920 -0.728

2 0.211 0.013 -1.717

3 -0.081 -0.538 -1.372

4 -1.254 -1.169 -1.752

5 -2.409 -1.769 -5.054

6 -1.505 -1.083 -1.296

7 -2.582 -2.792 -1.959

8 -2.313 -3.453 -5.956

9 -1.619 -3.631 -3.332

10 -1.750 -2.912 -1.330

11 -1.327 -6.263 -1.523

12 -1.097 -2.471 -1.425

Table 13: DM for electricity demand when the loss function is the RMSE - see tab:RMSE

VECM TVP-BECM TVP-BVAR PartTVP-BECM PartTVP-BVAR

2007

Forecast 344.528 335.750 332.792 331.846 333.548

Prc error 1.4% -1.2% -2.1% -2.4% -1.9%

2008

Forecast 347.461 338.700 337.041 340.718 349.871

Prc error 2.4% -0.2% -0.7% 0.4% 3.1%

2009

Forecast 337.598 331.263 334.770 334.512 341.244

Prc error 6.5% 4.5% 5.7% 5.6% 7.7%

Table 14: Demand forecasts for 2007.1:2007.12, 2008.1:2008.12 and 2008.1:2008.12 (TWh),

and corresponding percentage errors
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VECM TVP-BECM TVP-BVAR PartTVP-BECM PartTVP-BVAR

n=1 81% 88% 95% 87% 95%

Table 15: Empirical coverage rates electricity demand growth 90% forecast intervals

described. Then the frequency at which the actual growth rates of demand are con-

tained in the forecast intervals is calculated. In case of the VECM, the distribution of the

errors and therefore forecast intervals are obtained by performing the bootstrap over

the residual sample; for the Bayesian models they can be derived from the posterior

simulation of parameters and variances. In all cases, TVP Bayesian models have higher

coverage rates than the classical VECM. The reason relies on the fact that bayesian fore-

cast intervals intrinsecally incorporate parameters’ uncertanty. In particular, BECMs

with all or part of the coefficients varying display coverage rates close to the desired

90%; TVP-BVARs are somehow overcovering, while forecast intervals of the VECM

contain the actual growth rates of demand 81% of times only (Table 15).

5 Conclusion

This paper analyses alternative models for forecasting electricity demand. These are a

SARIMA specification, a VECM and TVP BVAR models that may or may not include

the cointegrating vector among the regressors. The latter specifications seem very ap-

pealing, as i) they use all the researcher’s information about the coefficients, and ii)

they account for possible changes in the parameters over time. Stability analyses show

that paramenters vary over time and that they evolve as random walks. Despite this

evidence, TVP VARs/TVP BECMs and VECMs show similar forecasting perfomances

(as measured by RMSE and MAE). Indeed, to restrict some of the coefficients to be

constant over the sample does not improve out-of-sample results. The same evidence

is reached when evaluating models’ relative forecasting performances by the Diebold-

Mariano statistic. In particular, let alone the SARIMA model (which could be prefer-

able for 1-2-step ahead forecasts only) it is not possible to find a model that works
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clearly better than the others at small, intermediate or large horizons. However, the

fixed coefficient VECM performs slightly better for 3-month up to 12-month ahead

forecasts, but the differential between the VECM and the TVP-BVAR model tends to

reduce for 10-12 step ahead forecasts. For further research, I plan a) to extend the

sources of time variability to the variance-covariance matrices of the shocks, and b) to

apply a strategy alternative to the one already adopted in the present study to tighten

parameters’ dimension.
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6 Appendix

Datails of the examined series. Electricity demand data are provided by Terna. Series

of the Italian industrial production are published monthly by ISTAT. Also, the two

vectors accounting for calendar effects are by ISTAT. The source of the data on Heating

and Cooling Degree Days is Bloomberg, and the two series are defined as:

CDD = max (0, t− 18)

HDD = max (0, 18 − t)

where t is the average daily temperature.
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