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Abstract

Migration and climate change are two of the most important challenges the world
currently faces. They are connected as climate change may stimulate or hinder migration.
One of the sectors most strongly affected by climate change is agriculture, where most of
the world’s poor are employed. Climate change may affect agricultural productivity and
hence migration because of its impact on average temperatures and rainfall and because
it increases the frequency and intensity of weather shocks. This paper uses data on
more than 150 countries from 1960 to 2010, to analyse the relationship between weather
variation, changes in agricultural productivity and international migration. Our main
findings show that, in line with theoretical predictions, negative shocks to agricultural
productivity caused by weather fluctuations significantly increase migration in middle
and lower income countries but not in the poorest and in the rich countries. The results
are robust to different econometric specifications.
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1 Introduction

Within the recent literature on climate change and migration, the impact of the increasing
average surface temperature on agricultural productivity has been indicated as a possible key
factor for the decision to migrate (Cai et al., 2016; Cattaneo and Peri, 2016). This is because,
on the one hand, agriculture is the main sources of income and employment in the rural
areas of developing countries, where the majority of migrants is coming from. On the other
hand, agriculture is the sector most affected by climate change with important implications
for agricultural productivity, rural livelihoods and food security, particularly in the developing
world (Lobell et al., 2011; FAO, 2017).

Starting from the seminal work of Todaro (1969) and Harris and Todaro (1970), economists
have interpreted migration as resulting from differences in economic opportunities or, more
precisely, from expected wage differentials between origin and destination countries. In ad-
dition, migration is considered a way to diversify income sources (Stark, 1991), a way to
deal with bad political institutions and conflicts, and a possible insurance mechanism against
environmental shocks (McLeman and Smit, 2006; Drabo and Mbaye, 2015).

In the last decades an emerging literature using mostly individual data and household
surveys investigated how weather variability and climatic shocks may affect migration (e.g.
Feng et al. 2010; Dillon et al. 2011; Mueller et al. 2014; Gray and Mueller 2012; Gray and
Bilsborrow 2013; Bohra-Mishra et al. 2014). The main findings show that, though climatic
shocks often trigger both internal and international migration, the relationship appears com-
plex and the effects are often country-specific (Gray and Wise, 2016). In addition, several
conflicting results have emerged, such as the low or irrelevant effect of precipitations, relative
to temperature (Mueller et al., 2014), or reverse effects, namely situations where adverse cli-
mate factors may reduce (and not increase) emigration flows (Gray and Mueller, 2012). One
critical issue is also the lack of macro studies focusing on climate change and international
migration, rendering the generalization of current (micro) evidence problematic.

More recently, important data collection, such as the bilateral migration dataset of Özden
et al. (2011), have trigger a new wave of (macro) studies on the impact of climate change on
international migration (e.g. Beine and Parsons 2015; Cattaneo and Peri 2016; Maurel and
Tuccio 2016; Cai et al. 2016), confirming some of the previous micro-evidence, but also raising
new issues. Importantly, when we focus the attention on the mechanisms driving the results,
current empirical evidence is, at best, scant. This is an important limitation of the literature,
especially because there is evidence suggesting that the effect of climate change on migration,
if anything, tends to be mainly indirect and mediated by other socio-economic characteristics
(Black et al., 2011; Beine and Parsons, 2015; Kubik and Maurel, 2016). Clearly, understanding
the key mechanisms and channels through which climate change may affect migration is crucial
to formulate evidence-based policy recommendations (Mbaye, 2017).
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Using different approaches and different dataset, a few recent papers explicitly investigate
the relationship between climate change and international migration, emphasizing the role of
the agricultural channel (Feng et al., 2010; Cattaneo and Peri, 2016; Cai et al., 2016).1 How-
ever, with the exception of Feng et al. (2010), who implemented a two stage least square (2SLS)
approach to study the link between climate-driven changes in crop yields and migration, the
actual evidence is mainly based on robust association, more than a careful identification of
the true mechanism in place.

Thus, the idea that agriculture can be one of the key mediating channel in the climate
change and migration relationship, is still an open and unresolved question.

Against this background, this paper uses a macro perspective to study the extent to which
the effect of weather shocks on migration works mainly through the agricultural channel. We
contribute to the existing literature in three main directions. First, guided by theory, we
exploit a large data set of more than 150 countries observed from 1960 to 2010, to investigate
the extent to which long-run climate-driven changes in agriculture affect directly migration.
Second, we use a two stage least square (2SLS) approach, together with a particular research
design, to test if there exists a causal relationship between changes in agricultural conditions
and migration outcomes. Finally, we conduct sensitivity checks of our results to rule out the
possibility that other concurrent explanations are driving the main findings.

Overall, our results provide convincing support to the idea that negative shocks in agri-
cultural productivity, induced especially by a (long-run) increase in temperature, positively
affect net migration outflows in middle-poor countries.

The remainder of the paper is organized as follows. Section 2 briefly considers the related
literature, while Section 3 reviews the theory behind the econometric specification. Section
4 illustrates the empirical methodology used to identify the agricultural channel and Section
5 outline the data used for the empirical analysis and describes the main statistics. Section
6 presents the main results while robustness checks are reported in Section 7. Section 8
concludes.

2 Related literature

This paper relates to two main strands of the recent climate-economy literature.2 On the one
hand, several papers have studied the effects of weather and climate change on agricultural
(and overall) productivity (Mendelsohn et al., 1994; Schlenker et al., 2006; Deschenes and

1Of course, there exist a large micro literature investigating both internal and international migration,
highlighting the role of agriculture. See Berlemann and Steinhardt (2017) for a critical review.

2Important reviews with a broad coverage can be found in Dell et al. (2014) and Carleton and Hsiang
(2016). Auffhammer and Schlenker (2014) survey the empirical literature on the weather and climate impacts
on agriculture, while Berlemann and Steinhardt (2017) the literature on climate change, natural disaster and
migration.
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Greenstone, 2007; Lobell et al., 2011; Dell et al., 2012; Hsiang, 2016). On the other hand,
there is the recent body of the literature that investigates the direct and indirect relationship
between climate change and international migration (Beine and Parsons, 2015; Feng et al.,
2010; Cattaneo and Peri, 2016; Cai et al., 2016; Maurel and Tuccio, 2016).

Looking at the first strand of literature, the seminal paper of Mendelsohn et al. (1994)
uses an hedonic cross-sectional model to investigate the relationship between farm land price
across US counties and growing season temperature and precipitations. The main finding is
that a higher temperature significantly reduces land value, while higher precipitations tend to
increase it, and that on the whole global warming has a very low impact on US agriculture.
Using a similar cross-sectional approach, Schlenker et al. (2006) estimate the potential impacts
on farmland values of a range of recent warming scenarios in the US agriculture. The results
show that the aggregate impact for the US counties considered in the near to medium term
is a 10%–25% decrease in aggregate land value, depending on the climate scenario chosen.

Unlike the previous contributions, Deschenes and Greenstone (2007) exploit the within
time variation to identify whether agricultural profits in US counties respond to random
fluctuations in weather. The main results show that climate change only marginally affects
agricultural profit in the US. Importantly, they also demonstrate how the hedonic approach
based on cross-sectional inference (the standard approach until then) is unreliable due to a
sever problem of omitted variables bias.

After the contribution of Deschenes and Greenstone (2007), the use of panel data mod-
els become the standard approach within the climate econometric literature. For example,
Schlenker and Roberts (2009) uncover important nonlinear effects of temperature on US crop
yields that exacerbate the predicted decrease in yield due to global warming. Lobell et al.
(2011) investigate the effect of weather trends on the main crops production, showing that
global worming has been responsible for a decline in global corn and wheat production of
about 3.8 and 5.5 percent, respectively. Dell et al. (2012) study the weather effects on both
level and growth rate of per capita GDP. The results highlight a negative effect of an in-
crease in temperatures on per capita GDP for poor countries: a 1◦ C increase in temperature
in a given year reduces poor countries economic growth by 1.3 percentage points, an effect
mainly driven by a reduction in agricultural output, and less by industrial output and political
stability.

As discussed in detail by Dell et al. (2014), the key advantage of this time series identi-
fication strategy is that it accounts for unobservable differences between units through fixed
effects, thus eliminating a potential source of omitted variables bias. An additional advantage,
is that time variation in weather variables, after accounting for fixed effects, is exogenous to
changes in socio-economic variables because it is driven by random geophysical processes.
However, a shortcoming of using panel methods with yearly data is the inability of fully
capturing adaptation to climate changes.
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With the aim of addressing this critical issue, some papers have recently proposed a long
differences approach (Dell et al., 2012; Burke and Emerick, 2016). The general idea of this
strategy is that, because changes in climate are gradual, averaging across long time spans (e.g.
a decade) should offer the possibility to capture both direct and belief effects (i.e. adaptation)
of climate change. This is because populations only adjust their beliefs when environmental
changes are expected to be persistent (Hsiang, 2016). However, studies that compared the
weather effect using data at both short- and long-run frequency have found that the magnitude
of the estimated effects of climate change on agricultural yields (and other economic variables)
are not so different (Dell et al., 2012; Burke and Emerick, 2016), thus suggesting quite limited
historical adaptation to climate change.

In situations such as the one investigated in the present paper, the idea that people may
decide to migrate internationally as a response to yearly variations in weather is, admittedly,
difficult to defend (Jessoe et al., 2016). This is because the migration decision has to be
viewed as a long-run adaptation strategy intended to cope with the direct effects of perma-
nent, not transitory, weather changes. For this reason, in our framework we identify the effects
of weather-driven agricultural changes on migration using a long-run (decennial) variation in
the variables of interest (a choice also dictated by data limitation). As discussed by Burke
and Emerick (2016), this approach offers substantial advantages over the cross-sectional and
(short-run) panel methods. For example, it better approximates the ideal experiment, it ad-
dresses potential omitted (time-invariant) variable bias and, at the same time, should capture
medium-run adaptations that farmers put in place against trends in weather. In addition, as
argued by Dell et al. (2014), also intensification effects should be captured, namely situations
when climate change may cause demages that are not revealed by small weather changes, but
that can be relevant in agriculture.3

Moving to the literature on migration and climate change, with special attention to the
role of agriculture, Marchiori et al. (2012) study the impact of weather anomalies on migra-
tion in sub-Saharan Africa. Assuming that agriculture, and hence rural areas, are the most
vulnerable places to weather changes, the authors argue that the more a country depends on
agriculture, the stronger the impact of weather anomalies on migration. Using an instrumen-
tal variable (IV) approach for GDP per capita, the results show that climate anomalies spur
both internal and international migration, and that urbanization might mitigate the effects of
climatic factors on international migration, mainly in rural areas. Beine and Parsons (2015)
investigated natural disasters and long-run climatic factors (temperature and precipitations)
as potential determinants of international migration. Using a gravity-like approach they find
that by affecting wage differentials long-run climatic factors have only indirect effects on bilat-
eral migration. In addition, some of their results depend upon country’s agriculture share of

3For example, situations where the permanent reduction of precipitations strongly affects the reservoir
availability of water to agriculture.
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GDP (similar results can also be found in Maurel and Tuccio, 2016 and in Drabo and Mbaye,
2015).

Coniglio and Pesce (2015) follow the same macroeconomic approach and explicitly consider
the heterogeneity of climatic shocks (type, size, sign of shocks and seasonal effects) with
specific attention devoted to expectations. Given the data used, the authors can account only
for emigrants to OECD countries, thus importantly limiting the scope of their analysis as
a huge amount of migrants displace in neighboring developing countries. Nevertheless, the
results are in line with other empirical papers according to which the occurrence of adverse
climatic events in the origin country has significant direct and indirect effects on out-migration
from poor to rich countries, especially from areas with large agricultural sectors.

Using data from 115 countries between 1960 and 2000, Cattaneo and Peri (2016) test two
main predictions derived from an extension of the Borjas (1985) migration decision model,
where the key assumption is that income in poor and middle income countries, being largely
dependent on the agricultural sector, is more affected by weather variability. Accordingly,
they find a positive impact of warming trends on the probability to emigrate in middle-income
countries, while in poor countries a negative pattern emerges due to liquidity constraints.

Finally, two studies are directly related to our paper. As in the present paper, Feng et al.
(2010) use a 2SLS estimation strategy with weather variables as instrument for agricultural
productivity, to investigate the extent to which climate-driven yield changes have a causal
effect on emigration. Exploiting migration data from Mexico to the US in two consecutive
five year periods (1995-2000 and 2000-2005), they find that 10% decrease in yields would cause
an additional 2% of population to emigrate. However, Auffhammer and Vincent (2012) show
that, by omitting time fixed effects from their specification, the climate-induced emigration
effects of Feng et al. (2010) cannot be distinguished by other simultaneous shocks occurred
in the same period, such as the effect of NAFTA, the Peso crisis, and changes in US border
controls after 2001. Thus, these factors, and not climate change, were responsible for the
change in emigration rates.4 Cai et al. (2016) use bilateral annual data over the period
1980-2010 covering 163 origin and 42 destination countries (mainly OECD) and, controlling
for country pair fixed effects, use cereal yields and the share of agricultural value added in
GDP to account for the role of agriculture in explaining international migration. Their main
finding is that temperature (but not precipitations) has a positive and statistically significant
effect on international migration outflows only for agriculture-dependent countries. However,
besides the use of bilateral migration data, the role of the agriculture channel is still identified
indirectly, and not through a structural model devoted to quantify the migration elasticity to
agricultural income shocks.

4In a recent working paper, Feng et al. (2015) use a similar two stage least square approach. Focusing on
US agriculture over the period 1970-2009, they find an inverse relationship between temperature and yields
which leads to a reduction of population through migration.
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All the above considerations suggest that there is scope for further analysis. On the one
hand, papers using a structural approach, such as the 2SLS research design of Feng et al.
(2010), produced results apparently not robust to potential (omitted) confounding factors.
On the other hand, the different strategy used by Cai et al. (2016) and Cattaneo and Peri
(2016), although robust from an econometric point of view, confirm only the existence of an
indirect association between climate change, the importance of agriculture and migration.
Thus, whether weather-driven changes in agricultural productivity have a causal effect on
international migration is still an unanswered question. This is what motivates the present
paper.

3 Theoretical background

In order to outline our empirical model it is covenient to refer to the theoretical predictions in
Cattaneo and Peri (2016). Their two-period model builds on the migration decision framework
proposed by Roy (1951) and formalized by Borjas (1987), according to which an individual i
will migrate if his expected wage at destination d is higher than the expected wage at origin
o, in a given time t. The key assumption is that the wage at origin and at destination depend
on a basic income which may vary according to, first, the importance of the agricultural and
non-agricultural sector within the country and, second, to a skill measure which accounts for
the selection process (see, among others, Stark and Bloom, 1985; Docquier and Rapoport,
2012).

In the first period the individual earns a specific local wage according to his skills, while
in the second period he may choose to migrate as a consequence of a comparison between
his wage at origin and his potential wage at destination, bear in mind that incurring in the
migration process will entail some costs.

Analytically, at origin an individual i will earn the wage wio,t = γo,tWt + Ct + αo,tεi,t,
where γo,t is the individual income depending on Wt weather factors such as variations in
temperature and precipitations, Ct are costs associated with the migration process and αo,t
is the return to skills, with εi,t ∼ (0, σ2

i ) being a measure of individual skill.
The wage at destination d is given by wid,t = γd,t + αd,tεi,t, with γd,t not depending on

weather variables. This is mainly due to the fact that, following the literature, climatic and
weather factors are assumed to affect mainly basic income derived from agriculture, which is
the main wage source in poor and middle-poor countries. These countries are in the framework
proposed by Cattaneo and Peri (2016) taken to be the sending countries; on the contrary,
income in middle-rich and rich countries does not depend exclusively on the agricultural
sector, so that variations in temperature and precipitations could impact differently.
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Thus, an individual will migrate if:

γd,t + αd,tεi,t > γo,tWt + Ct + αo,tεi,t (1)

that is, if the expected wage at destination is higher than the expected wage at origin net
of migration costs, assuming that return to skills are perfectly transferable from origin to
destination countries.

Taking into account the selection process according to which only a portion of individuals
at origin can migrate, that is only the skilled ones have the incentive to migrate due to a
potential gain in migration, equation (1) can be rewritten as:

εi >
γo,tWt − γd,t + Ct

αd,t − αo,t
= ε∗ (2)

Equation (2) indicates that a shock in Wt at the origin (e.g. higher temperature) will
increase the probability to migrate ( δε∗

δγo,t
> 0). However, poor individuals may face feasibility-

liquidity constraint at origin so that the migration process may occur only if savings exceed
the monetary cost of migration. While we are aware of this fact, in our empirical work to be
presented below, we aggregate poor and middle-poor individuals on the one hand, and middle-
rich and rich individuals on the other hand. Therefore, we focus the attention on Proposition
1 of Cattaneo and Peri (2016) where an increase in average temperature is associated with an
increase in the emigration rate for middle-income countries only, assuming that an increase
in temperature decreases basic agricultural productivity. Analytically, the share of migrants,
which is highly dependent on the probability to emigrate, can be formalized as follows:

Migc,t
Popc,t

= 1− Φ
(
γo,tWt − γd,t + Ct

αd,t − αo,t

)
(3)

where emigration Migc,t is weighted by the total population Popc,t of a country c and Φ is
the CDF of a standard normal distribution. More specifically, in equation (3) it has been
assumed that the probability to emigrate, and hence the share of migrants, among other
things, depends on a variation in weather Wt which could decrease basic income (affecting
income differences between origin and destination countries). Therefore, in the case of poor
countries, this represents largely a variation in agricultural outcomes (γo,t), highlighting a
negative relationship between weather-induced agricultural shocks with respect to emigration.

4 Econometric approach

On the basis of the theoretical model described in the previous section, we assume that the
emigration rate (Migc,t

Popc,t
), which is our dependent variable in the empirical analysis, is driven
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by the willingness to migrate. Hence, by increasing the probability to migrate, climatic shocks
shall increase, as a consequence, the emigration rate.

Our country level analysis is based on a two stage least square (2SLS) approach similar
in spirit to the analysis of Feng et al. (2010), though with important differences, in the use of
fixed effects, in the (macro) level of the analysis, in the identification strategy, and in the use
of a long-run econometric approach.

The empirical model can be written as follow:

mit = βxit + f(t) + ci + εit (4)

xit = γWit + f(t) + ci + vit (5)

Equation (4) represents our regression of interest, where the (log) of emigration rate,mit, from
country i to the world at time t, is regressed on our key variable, the (log) of agricultural
output or productivity, xit. We aim at estimating an unbiased β coefficient that represents the
elasticity of net emigration with respect to agricultural outcomes.5 However, what happens
in the agricultural sector tends to be endogenous relative to the migration decision since,
for example, any increase in the rate of emigration from rural areas, for reasons other than
agricultural shocks (e.g. conflicts), will directly affect the level of agricultural output. Hence,
in our first stage equation (5), the agricultural endogenous variable, xit, is assumed to be a
function of weather shocks, Wit, that represent our instrumental variables. Both the first and
the second stage, respectively equations (5)-(4), include a full set of year controls, f(t), and
country fixed effects, ci. Finally, εit and vit are the errors of the two equations, assumed to
be normally distributed. On the basis of equations (4) and (5) we purport to test whether
the effect of climate change on migration is mainly indirect and mediated by the agricultural
channel.

The most critical assumption is the validity of our instruments,Wit, namely their relevance
and exogeneity (exclusion restriction). As is well known, relevance implies that our instru-
ments should be sufficiently correlated with the instrumented variable, i.e. corr(Wit, xit) 6= 0,
so that the first stage, equation (5), is consistently identified. The exclusion restriction,
instead, requires instruments not to have any other direct effect on the outcome variable (em-
igration), other than the one mediated by the agricultural channel, i.e. corr(Wit, εit) = 0,
after controlling for relevant covariates.

That weather variations affect agricultural yields is well established, given the large amount
of evidence from agronomic models and, in the last decades, from the climate econometrics
literature (see Auffhammer and Schlenker, 2014). In particular, as explained above, the first
stage (as well as the second stage) equation is identified by exploiting gradual (decennial)

5From now on in this section we will refer to agricultural outcome, agricultural productivity and agricultural
output interchangeably.
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changes in weather with gradual changes in agricultural productivity (and migration). Be-
cause our econometric specification is always conditioned on year and country fixed effects,
the estimated parameters of interest are identified from the country-specific decennial devia-
tions in weather from the country-specific means, after controlling for shocks common to all
countries. Under these conditions, the general idea is that weather variation is orthogonal to
unobserved determinants of yields, a standard assumption made by the literature (see Dell
et al., 2014).

More problematic is, in principle, the exclusion restriction of our instruments, namely
that weather variations affect the migration decision only through their effects on agricultural
outcomes. This is because, there is evidence showing that climate variability may affect a
multiplicity of different economic and social outcomes potentially inducing people to migrate,
such as economic growth and political instability (Dell et al., 2012), conflicts and wars (Burke
et al., 2015a), and health outcomes (Deschenes and Moretti, 2009). Whether these additional
channels are sufficiently controlled for in our research design is difficult to be properly estab-
lished. What we can do is to make as convincing as possible our econometric identification.

Note that, by including country fixed effects, we control for time-invariant country specific
factors, such as proximity to destination countries, network effects and other unobserved
factors that could affect the migration process (Feng et al., 2010). In addition, time fixed
effects f(t) address all common factors that could affect both agriculture and migration trends,
such as technological progress, and changes in agricultural policies (due to international price
movements) as well as overall economic conditions both at origin and destination.

In addition, and importantly, guided by the predictions of Cattaneo and Peri (2016)
discussed above, we estimate our model separately for: (i) poor and middle-poor countries
(henceforth Poor); and (ii) middle-rich and rich countries (henceforth Rich). This is crucial
for the credibility of our identification strategy. Indeed, similarly to Feng et al. (2015), in
our research design Rich countries act as a control group. Basically, if changes in climate
affect migration through channels other than agricultural outcomes, that is, the error term
in equation (4) is correlated with the instrument (corr(Wit, εit) 6= 0), then our estimate for
β would also be non-zero in the Rich countries subsample. Instead, the relationship between
migration and climate change should be relevant only for the Poor country group, but not
in the Rich one. This is because the agricultural income/wage effect, induced by climate
change, is relevant only in countries where the agriculture sector is one of the key sources
of individual income. Thus, while weather shocks should clearly affect agricultural yields in
both Rich and Poor countries, and this will come out clearly from our first stage equation
(5), in the second stage equation (4) our variable of interest, agricultural outcome, should be
relevant and statistically significant only for the Poor countries’ sample. Hence, by comparing
the performance of the second stage regression in the two country groups (Poor vs Rich), we
can be quite confident about the credibility of our empirical approach.
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In conducting the investigation we start from a parsimonious specification that does not
include control variables in the analysis other than country and year fixed effects, for two
main reasons. First, in our framework, to estimate the impact on emigration of agricultural
productivity, we uses only the portion of variations in productivity that is predicted by long-
run variations in climate. Hence, because such variations tend to be exogenous to other factors
potentially affecting migration, in principle it is not necessary to explicitly control for other
social and economic determinants of emigration. Second, several controls such as economic,
political and demographic variables may themselves be affected by agricultural productivity
shocks (and vice-versa), so that including them may produce a bias in the estimation by
introducing an over-controlling problem (see, among others, Hsiang, 2016). However, in a
section on robustness check we also use the 2SLS approach with controls suggested by the
most recent literature on climate change, such as GDP per capita, political institutions,
conflicts and wars, and health indicators.

5 Data and descriptive statistics

In view of the empirical analysis, we construct a panel dataset covering all available countries
in the world from 1960 to 2010 by merging different sources of data from which our key
variables come from.

Firstly, data on international migration are taken from Özden et al. (2011). This dataset
is a global matrix of bilateral migrant stocks from 115 countries to 115 countries spanning the
period from 1960 to 2000 with ten year intervals. We extended it until 2010 using estimates
from the same World Bank sources, so that we can benefit from one more decade of obser-
vations. These data are available every ten years due to the fact that the original sources of
these data are national Censuses. As stressed by Cattaneo and Peri (2016), among others,
these data are much more accurate in counting foreign-born individuals than flow measures
and they allow us to study the long-run relationship between agricultural outcomes, weather
variability and migration behavior. As seen above we construct our dependent variable by
first summing all emigrants from each origin country and then computing emigration rate as
the ratio between the aggregate net outflow relative to the origin country population at the
beginning of each period considered. Thus, we compute net emigration as differences between
stocks in two consecutive Censuses. As shown in Table 1 the average migration rate in the
period considered (1960-2010) is equal to 2.5% with a maximum of 3.2% in 1980-1990 and a
minimum of 1.5% in 2000-2010.

[Table 1 about here]

Secondly, data on mean temperature and precipitations are taken from Burke et al. (2015b)
which extend the Dell et al. (2012) dataset. They are expressed as population-weighted (or
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area-weighted): average annual temperature in degrees Celsius while precipitations are in
millimeters.6 This dataset is the result of aggregation at the country level of worldwide
monthly mean temperature and precipitation data at 0.5 x 0.5 degree resolution. Values are
interpolated for each grid node from an average of 20 different weather stations, corrected
for elevation. We then calculate the mean temperature and precipitation over ten years,
harmonizing this part of the dataset with the one on migration.

In Figure 1 it is shown that high temperatures are mainly a feature of Poor countries,
while moderate or low temperatures characterize Rich countries (see Dell et al., 2012 for
similar results).

[Figure 1 about here]

Thirdly, we account for agricultural output and agricultural productivity. In the former
case we obtain gross production values measured in constant 2004-2006 international dollars
from FAOSTAT, create the mean value over ten years, and take the logarithm of this variable.
In the latter case we compute the ratio between agricultural output and agricultural land and
we transform it in logarithm.

In Table 1 we report the summary statistics for all countries and then splitting the sample
according to the Poor and Rich countries definition. We consider poor and middle-poor
countries (Poor) those belonging to the first and second quartiles of the per capita income
distribution in 1990, while middle-rich and rich (Rich) those in the third and fourth quartiles.
We end up with a sample of 107 Poor countries and 53 Rich ones. Agricultural output and
agricultural productivity are higher in middle-rich and rich countries, while temperature and
precipitations are higher in poor and middle-poor countries.

[Figure 2 about here]

Panels (a) and (b) of Figure 2 show that variations in agricultural output and emigration
rates tend to go in opposite directions in the case of the Poor sub-sample, so that a decrease in
the agricultural output is inversely related to the emigration rate. On the contrary, for Rich
countries a decrease in agricultural output is associated with a decrease in the emigration rate.
The pattern is similar when we consider the variation in agricultural productivity, instead of
agricultural output, as shown in Figure 3 (a-b).

Looking more closely at the differences among poor and rich countries, we also focus on
three specific regional areas: Africa, Asia and Latin America countries. We include in the
African region Eastern, Western, Middle and Southern African countries; in the Asian region
East Asia and Pacific and South Asian countries, while Central and South American countries
form Latin America. In Figure 2 and 3, panels (c-d-e) for all our three regions, there is a clear

6As a robustness check, we also used temperature and precipitation expressed in area-weighted terms. The
results are not reported here but do not change qualitatively.
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divergent trend between agricultural output or productivity and emigration rate with a more
pronounced pattern for Asian and Latin America countries, but less so for African countries.

[Figure 3 about here]

Table 2 reports summary statistics by regions. Overall, the higher percentage of emigrants
comes from Latin America, while African countries are those with the lowest level of emigra-
tion which could be due to income constraints making migration for Africans costly.7 Asian
countries are more agriculturally productive then the other two regions and, in addition, are
those with a low level of precipitations. African countries are, on average, the hottest in our
sample.

[Table 2 about here]

6 Econometric results

6.1 Reduced-form and OLS results

To substantiate our empirical approach, we start by estimating an equation in which the
logarithm of the emigration rate is regressed directly on our weather variables (both linearly
and squared), controlling for year and country fixed effects. This corresponds to the case
where we estimate the reduced-form equation obtained from substituting (5) into (4). We do
this in order to show the extent to which the main findings of the previous literature hold
true for our extended dataset and sample of countries.

Table 3 presents the results for the full sample in column (1), for the sample of Poor
countries in column (2) and for Rich countries in column (3) accounting for robust standard
errors. Starting from the overall sample, we see that the emigration rate is increasing in
temperature, but at a decreasing rate. This non-linear pattern also characterizes the effect of
precipitations, though theses variables are never statistically significant. Weather variables,
and particularly temperature, are significant at 10 percent level for Poor countries, but not
for the Rich ones. Thus, an increase of temperature over the trend, during a 10-year period,
induces people of poor and middle income countries to emigrate, an effect however that is not
estimated with great precision. Taken together, these reduced form results are fairly consistent
with previous evidence, and particularly with Cai et al. (2016): migration is mainly affected
by temperature variability in a non-linear fashion, but only in the poor and middle income
countries.

[Table 3 about here]
7Per capita GDP in the African region is, on average, 613 US$ while it is 2422 US$ in Asia and 1682 US$

in Latin America.
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In the next set of results we focus on the relationship betweem migration and agriculture.
Table 4 presents fixed effects (FE) OLS estimation results where we regress the emigration
rate on our variables of interest, agricultural output or productivity and weather variables.
As before, we consider the overall sample and respectively the Poor and Rich countries sub-
samples separately. In Panel A we include only the agricultural regressors, besides country
and time fixed effects. In Panel B we also add weather variables as controls, again with a
quadratic spacification. These regressions serve as a reference for our 2SLS research design
which will be presented in the next sub-section.

[Table 4 about here]

When measured as production output, the effect of agriculture on migration is negative and
strongly significant in both the overall and the Poor sample but not in the Rich one. We find a
similar pattern when we use agricultural productivity as regressor: a reduction in agricultural
productivity increases the rate of emigration, though now the effect is (less strongly) significant
also in the case of the Rich countries. Thus, controlling for country and time fixed effects,
what happened in the agricultural sector appears to be very important for the decision to
emigrate, and this is especially true for poor and middle income countries. Quantitatively,
the estimated elasticity implies that a 1% reduction below the trend in agricultural output (or
productivity) over a 10-year period induces an increase of the emigration rate ranging from
0.5% to 0.7%, considering the overall sample. The size of this (OLS) effect is of the same
order of magnitude as the 2SLS estimate by Feng et al. (2015) for the US internal migration.
As discussed above, the estimated effect of agriculture on the emigration rate could be biased
due to reverse causality problems, as any variation in the emigration rate due to reasons other
than agricultural shocks will affect directly agricultural production. In addition, these OLS
estimates may suffer from omitted variable bias induced, for example, by international price
shocks and the government reaction to these shocks through agricultural protection policies
(Olper et al., 2014), both factors that could increase or offset the migration responses.

OLS regressions in Panel B add weather variables as controls. The agricultural output
or productivity effect on migration is nearly unchanged in size and remains negative and
strongly significant also in this specification. By contrast, and interestingly, when controlling
for agriculture variables, migration decisions appear to be no longer a response to weather
variability, a result in line with the finding of Beine and Parsons (2015) and Kubik and Maurel
(2016), who argued that climatic shocks tend to have mainly indirect effects on migration.
This result provides preliminary support to the idea that agriculture can be an important
mediating channel in the relationship between weather and migration and, interestingly, it
does not contradict the validity of our exclusion restriction.
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6.2 2SLS estimation results

Table 5 reports the main results of estimating the system of equations (4) and (5), with the
second stage results displayed in Panel A and the first stage results displayed in Panel B.
Results are shown for the full country sample in columns (1) and (2), the Poor countries
sample in columns (3) and (4) and the Rich countries sample in columns (5) and (6). As
before, all specifications include time and country fixed effects.

We first address the issue of the relevance of our instruments and look at the evidence
reported at the bottom of Panel A (first stage). We see that the p-value of the under-
identification test suggests that the excluded instruments are relevant in all the specifica-
tions, confirming that they are correlated with the endogenous regressors. In addition the
Kleibergen-Paap Wald F-statistic for the weak identification of our instruments satisfies the
Stock et al. (2002) and Stock and Yogo (2005) critical values for several, but not all, regres-
sions. The cases potentially more problematic are those related to the Poor countries sample,
especially when agricultural productivity is used as the endogenous variable (see column 4).
Here, the first stage Wald F-statistic, equal to 3.95, is admittedly far from the rule of the
thumb value of 10. For this reason we report two additional weak instruments test. First,
the Anderson and Rubin (1950) AR test statistics always rejects the null hypothesis that the
coefficients of our endogenous variables in the structural equation are equal to zero. Second,
the fractionally re-sampled Anderson and Rubin (FAR) test recently proposed by Berkowitz
et al. (2012) which is able to obtain valid, but conservative, inferences when the instruments
do not perfectly satisfy the exclusion restriction in the second stage. In our specifications, the
FAR test rejects systematically the hypothesis that the second stage coefficient is zero at 1%
level of significance, thus confirming that our instruments do a good job at identifying the
first stage equation.8

The first stage regressions of Panel B show that temperature and its square have the
expected non-linear effect on agricultural production, an effect that is strongly significant in
nearly all the country samples considered. Interestingly, the magnitude of the temperature
effect is, on average, twice larger in the Rich country sample than in the Poor one for both
agricultural output and agricultural productivity. This difference is probably due to the
quality of weather, and perhaps also agricultural, data notoriously lower in Poor countries.
This translate in an error in variables in the Poor countries’ sample that induce attenuation
bias in a fixed effects specification (Auffhammer and Schlenker, 2014), a problem that is
probably at the root of the low first stage F-statistic in some specifications discussed above.9

Precipitations are never statistically significant, a result that is robust across samples and
8To apply the FAR test we used K=5 with 100 repetitions of the re-sampling procedure.
9Another important reason could be the low frequency of our data. As shown by Feng et al. (2015) the

F-statistics of the first stage regression significantly decrease as the number of “yearly” observations go down,
i.e. moving from yearly to 5-year averages.
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estimation methods, as already shown in the previous tables.
Moving to the second stage results reported in Panel A, in line with theoretical predictions

our findings strongly confirm that climate-driven changes in agricultural outcomes affect sig-
nificantly net migration outflows so that a decrease in agriculture production leads individuals
to migrate. Importantly, this effect is only relevant in the case of Poor countries (columns
3 and 4), where there are not technological adaptations and migration may be treated as a
plausible coping strategy. No effects are detected on the contrary for Rich countries where
the agricultural variables are never statistically significant (columns 5 and 6), even if the
first-stage results suggested a similar pattern between agriculture and weather variables, as
for the Poor countries.

The magnitude of the 2SLS estimated effect of agriculture is more than 3 times larger
than that of the corresponding OLS effect in the previous table 4. For example, considering
columns 3 and 4, a 1% decrease in agricultural production (resp. productivity) below its
trend, over a 10-year period, induces an additional 1.9% (resp. 2.1%) increase of emigration
rate, a sizeable effect from an economic point of view. In comparison, when Rich countries
are considered, the estimated agricultural effect on emigration is never statistically significant,
and even positive when the agricultural output is considered (see column 5). This pattern of
the results therefore gives credence to our identification strategy, where the sample of Rich
countries serves as a conterfactual scenario.

It is useful to further investigate the effect for poor and middle-poor countries of climate-
driven changes in agriculture outcomes on the decision to migrate. Recall that the findings
by Cattaneo and Peri (2016) suggest that liquidity constraints faced by poor individuals at
origin may represent an additional cost to emigration. Looking at the summary statistics for
the sample disaggregated across regions reported in Table 2, we see that this problem can
be especially severe in African countries, where the emigration rate, as well as agricultural
productivity and per capita GDP are significantly lower than in the other regions considered.
These figures suggest that the climate-driven changes in agriculture productivity on emigra-
tion should be weaker or even reversed in African countries. To test for this possibility, in
Table 6 we restrict the empirical analysis to regions that are characterized by low per capita
GDP levels, distinguishing between Latin America, Asia and Africa regions (columns 1 to 3),
respectively, and using as control the effect on OECD countries (column 4).

[Table 6 about here]

The effect is significant for Asia and Latin America, while there is no significant effect
for the Africa region where the estimated coefficient on agricultural variables is even positive,
albeit statistically insignificant. This is plausible as the Africa region is the poorest in the
sample, so that individuals may encounter liquidity constraints limiting the migration process.
Asian and Latin America are the regions where changes in agriculture productivity affect the
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probability to migrate more: in this case we are dealing with middle-poor countries where
the income constraint is becoming weaker. Clearly, other channels may be at work, for
example there are different international agreements between Latin American countries and
some OECD countries by virtue of which individuals may be facilitated in the migration
process.10 At any rate, these additional findings are in line with the underline theory on
which our empirical analysis is based, giving further credence to the validity of the research
design.

7 Robustness checks

7.1 Results with additional controls

The validity of our 2SLS results in Table 5 depends on the assumption that our weather vari-
ables have no direct effect on current emigration rates, after controlling for (instrumented)
agricultural production and including country and time fixed effects. Although this assump-
tion has been argued to be plausible, we now assess the evidence after directly controlling for
several covariates that have been shown to be correlated with weather variables and migration
outcomes. The approach is similar to Acemoglu et al. (2001), in that we try to assess the po-
tential for omitted variable bias in the case of regressors that have time variation, since in our
panel regressions included fixed effects absorb any time invariant omitted variable bias. The
idea is that if the estimated coefficient of agricultural variables do not change as additional
covariates are included in the regression, then they are less likely to change if we add some of
the (time varying) omitted variables. In general we find that our results change remarkably
little with the inclusion of additional controls and many variables emphasized in previous
works are insignificant once the effect of agriculture is controlled for.

We consider four covariates suggested by the most recent literature on the impact of
climate on socio-economic outcomes (see, e.g., Dell et al., 2014; Carleton and Hsiang, 2016).
These are: (i) economy-level outcomes as measured by the log of per capita GDP, taken from
the Penn World Tables; (ii) the number and frequency of conflicts and wars taken from the
Arms&Conflict database; (iii) the quality of institutions as measured by the Polity 2 index
of democracy taken from the Polity IV dataset (Marshall and Jaggers, 2007); (iv) a health
indicator of the overall population as measured by the life expectancy at birth, taken from
the World Development Indicators of the World Bank. In Table 7 we report the results of
2SLS regressions where these four controls are included simultaneously. In the appendix A,
the contribution of each of these variables is investigated individually in our 2SLS regressions.

[Table 7 about here]
10For example, the Spain-Ecuadorian visa agreement signed in 1964 and effective from 1965 to 2000, which

significantly facilitated the entrance of Ecuadorian immigrants into the Spanish and the EU labor market.
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Because the theory on which our research design is based emphasized climate-driven in-
come effects as the key determinant of the emigration decision, the first critical variable to
be included to test the robustness of the agricultural channel is GDP per capita. Dell et al.
(2012) and Burke et al. (2015b) found a strong (short-run) relationship between per capita
GDP and temperature. While Dell et al. (2012) argued that the relationship holds only for a
country whose income is below the median level, i.e. for poor countries, Burke et al. (2015b)
showed that a similar (non-linear) relationship between temperature and overall economic
growth holds for both poor and rich countries.

The results of 2SLS regressions in Table 7 (and Table A.1 in the appendix A) prove to be
robust to the inclusion of per capita GDP in our context. In the first stage equations GDP per
capita is positive and significant in some cases, reducing somewhat the effect of temperature on
the instrumented agricultural variables, especially in the case of Poor countries (see columns
3 and 4 of panel B). However, and importantly, the magnitude of the estimated coefficients of
agricultural variables in the second stage equations is virtually unchanged, after controlling
for per capita GDP (see panel A), a variable that is never statistically significant in the Poor
country sample.11

Another important variable to allow for is conflicts and wars. Recent works have empha-
sized how climatic conditions may influence the relationships between groups, increasing the
probability of large-scale conflicts (Hsiang et al., 2013; Burke et al., 2015a), and conflicts and
wars are clearly a primary source of migration decision (see, among others, Adhikari, 2013;
Brzoska and Fröhlich, 2016). In addition, a few papers have shown how, in the modern warm
period, the increase in temperature fosters collective violence, such as land invasions in Brazil
(Hidalgo et al., 2010) or civil war intensity in Somalia (Maystadt and Ecker, 2014). If these
wars induced by hot weather conditions are correlated with agricultural production and emi-
gration, then our previous estimates will be biased. We see that controlling for conflicts and
wars (see also Table A.2 in the appendix A) does not affect in any way the impact of agricul-
ture production on emigration. Indeed, inspection of first stage results in Table 7 (panel B)
suggests that the increasing breakouts of wars negatively affects agricultural production, an
effect that is only marginally significant in column 3. In addition, and quite surprisingly, in
our second stage regressions the wars variable does not affect at all the emigration rate (see
Table 7, panel A).

Moving to the role of political institutions, a regime change toward autocracy may clearly
11Note that, once we control for agricultural variables, per capita GDP in our regressions should capture

the variability of the income effect stemming from non-agricultural sectors, such as industry and services.
Hence, our results implicitly suggest that non-agricultural income variability is not a major determinant of
emigration, after controlling for agriculture. To investigate further this issue we ran a 2SLS regression where the
instrumented variable is industrial output in constant dollars, rather than agriculture outcomes or productivity,
within a specification identical to our regressions of Table 5. The results strongly confirm that weather induced
variability in industrial production is not a significant determinant of emigration rate. The results are available
from the authors upon request.

18



affect emigration directly, an impact that could be particular severe for rural people because
there is evidence showing how autocratic governments tax the agricultural sector heavily
(Olper et al., 2014). Furthermore, Dell et al. (2012) find evidence that higher temperature
induces a general reduction in the quality of democracy or a deterioration of the quality of
autocracy in poor countries, bringing more political instability and less growth (Alesina et al.,
1996). Controlling for the quality of democracy using the Polity 2 index in our regressions
does not change the effect of weather induced agricultural shocks on emigration and the Polity
2 index is never statistically significant in our 2SLS regressions (see Table 7 and Table A.3 in
the appendix A).

As a final control we add to our specification health outcomes, as measured by life ex-
pectancy at birth. The presumption is that adverse weather shocks, induced by very hot (or
very cold) temperature, by affecting mortality, morbidity and early life (Carleton and Hsiang,
2016), could induce people to migrate. Note that the effect could be both direct, i.e. people
choose to migrate to cope with the physiological effects of high (low) temperature, but also
could be indirect through the agricultural channel. This is because working in agriculture, es-
pecially in poor and middle income countries, being an outdoor activity, is affected by weather
conditions more than other working indoor. Although our results show that some of these
channels are plausible, controlling for health outcomes do not affect to any degree our 2SLS
results. Indeed, though life expectancy strongly positively affects production and productivity
in agriculture in our first stage equation (see Table 7, panel B), it has no effect on the second
stage equations, where the effect of agricultural variables are virtually the same (see Table
A.4 in the appendix A).

7.2 LIML estimation results

Our 2SLS results could be affected by weak instruments problems for two main reasons. First,
the use of decennial time periods, though meaningfully for the credibility of our identification
strategy - i.e. people do not migrate to cope with yearly weather variation but with gradual
and persistent changes in weather conditions - by reducing the frequency of our weather
variables, could make the identification more problematic. Second, weather data, especially
in poor and middle income countries, are measured with errors (see e.g. Auffhammer and
Schlenker, 2014) and this introduces attenuation bias in our fixed effects regressions. We
already discussed this aspect when showing that both the underidentification test, the AR
test as well as the most conservative FAR test, did not detect particular problems with our
instruments. In addition, in the presence of weak instruments, the estimated coefficient of
2SLS should converge toward the OLS one (see Angrist and Pischke, 2008). This is never
the case in our regression results, where the 2SLS coefficients of the agricultural variables are
more than 3 times larger than the OLS ones (see columns 1-4 of Table 5).
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However, to further check the robustness of our results with respect to weak instruments
problems, in Table 8 we present results obtained using a Limited Information Maximum
Likelihood (LIML) estimator.

[Table 8 about here]

This is approximately median unbiased for overidentified constant effects models and pro-
vides the same asymptotic distribution as 2SLS (under constant effects) but also a finite
sample bias reduction. The estimated effect with the LIML estimator is qualitative and quan-
titatively similar to the 2SLS results, for both our agricultural variables of interest. Thus,
the LIML results, together with those of the reduced form equations and the large difference
between the OLS and 2SLS coefficients, represent a confirmation of the robustness of our key
findings.

8 Discussion and conclusions

This paper has been motivated by the recent and growing literature on the relationship be-
tween climate variability and migration. At both micro and macro levels a growing body of
research has established the existence of an empirical link between weather variables, such
as temperature and precipitations, and migration decisions. Several studies emphasize the
agricultural sector as one of the main mediating channel through which climate change may
affect migration. To date no paper, especially at the macro level, has tested the structural
relationship of this climate-driven changes in agricultural outcomes and migration decision
hypothesis. Guided by the theoretical framework of Cattaneo and Peri (2016), we explicitly
tested whether changes in agricultural outcomes, induced by decennial variations in temper-
ature and precipitation, are at the root of climate induced international migration decisions.

We find a strong confirmation to this hypothesis using both OLS and 2SLS approaches.
Our preferred second stage results indicate that, on average, a reduction in agricultural output
(or productivity) of 1% from its decennial trend induces an increase in the emigration rate
of about 2% in the sample of poor and middle income countries, whereas for rich countries
the effect is never statistically significant. This migration elasticity to agricultural outcomes
is precisely estimated and it is robust to the use of different agricultural variables (overall
output and productivity per hectare) and to the addition of several covariates suggested
by the literature as plausible determinants of emigration. Quantitatively our finding show
that the 2SLS effect is about three times larger than the OLS one, suggesting that, by not
considering the endogeneity of agricultural variables relative to the migration decision, one
significantly underestimates the magnitude of this elasticity. In addition, we have shown that
the significant effect in the Poor country sample of the climate-induced agriculture effect on
migration is driven mainly by Asian and Latin American countries, while there is no effect
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for the (poorest) African countries. This result is consistent with the hypothesis according
to which liquidity constraint faced by poor individuals at origin may represent an additional
cost to emigration. Hence, our findings confirm that the effect of climate on migration may
have two opposing influences. On the one hand, a deterioration of economic conditions can
motivate people to migrate, but at the same time undercutting household resources needed
to migrate could hinder the migration process.

Understanding the extent to which climate-induced changes in agricultural outcomes cause
migration is of vital importance from a policy perspective. This is because any policy action
finalized to mitigate the effect of climate change on migrations needs to be well informed
about the main channels at work. Using a particular research design and after several robust-
ness checks, we argue that our main finding has a causal interpretation. However, it is also
important to keep in mind the limitations of our results.

First, we are not arguing that climate-driven changes in agricultural outcomes are the only
factor inducing migration decisions, but there exist other, perhaps more important, determi-
nants of migration flows, as suggested by a large literature. Second, in our framework the role
of agriculture as key mediating channel emphasizes direct income effects, i.e. how agricul-
tural income shocks change the opportunity costs to stay or to migrate. Admittedly, though
this can be one of the relevant mechanism, there are reasons to believe that the transmission
channel from agricultural income shocks to migration, can be more complex, differentiated
across countries, and involving other key variables, such as food security, resource conflicts
or farm holdings heterogeneity.12 Future work should be directed to better understand the
mechanism through which weather-induced changes in agricultural income affect migration
decisions in developing countries.

12See, for example, McGuirk and Burke (2017), who studied the relationships between food price changes
and conflicts in Africa countries, or Bazzi (2017) who showed that positive agricultural income shocks increase
or decrease emigration in Indonesia, depending on the size distribution of landholders.
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Figure 1: GDP per capita and temperature (population weight)
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Source: authors’ calculations based on Özden et al. (2011), Burke et al. (2015b) and World Bank data.

22



Figure 2: Emigration rate and agricultural output by regions

Notes: Decennial mean variation in migration rate and agricultural output. Authors’ calculations

based on Özden et al. (2011) and FAOSTAT data.
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Figure 3: Emigration rate and agricultural productivity by regions

Notes: Decennial mean variation in migration rate and agricultural productivity. Authors’ calculations based

on Özden et al. (2011) and FAOSTAT data.
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Table 1: Summary statistics

Variable Mean Std. Dev. Min. Max. N

All Countries
Emigration rate 0.029 0.046 0 0.681 753
Agricultural output (PPP $) 10037.045 34750.955 10.954 536769.651 692
Agricultural productivity (PPP$/ha) 63.825 86.171 0.406 651.034 692
Temperature PW (deg. C) 19.316 7.186 -2.18 28.998 715
Precipitations PW (mm) 11.394 7.288 0.049 42.019 715
GDP per capita (log) 6.985 1.49 3.812 10.916 665
Wars 1.082 2.64 0 10 753
Democracy 0.493 0.5 0 1 753
Life expectancy 61.299 11.33 27.22 81.294 751

Poor and Middle-poor Countries
Emigration rate 0.029 0.041 0 0.351 516
Agricultural output (PPP $) 8325.361 35982.005 10.954 536769.651 506
Agricultural productivity (PPP$/ha) 45.563 62.79 0.406 582.031 506
Temperature PW (deg. C) 22.355 5.178 -2.18 28.998 512
Precipitations PW (mm) 12.536 7.779 0.206 42.019 512
GDP per capita (log) 6.446 1.171 3.812 9.849 467
Wars 1.268 2.782 0 10 512
Democracy 0.432 0.496 0 1 512
Life expectancy 57.195 10.595 27.22 78.150 512

Middle-rich and Rich Countries
Emigration rate 0.03 0.055 0 0.681 241
Agricultural output (PPP $) 14693.560 30767.663 41.119 237480.869 186
Agricultural productivity (PPP$/ha) 113.506 116.528 2.533 651.034 186
Temperature PW (deg. C) 11.652 5.68 0.978 26.038 203
Precipitations PW (mm) 8.513 4.798 0.049 24.125 203
GDP per capita (log) 8.257 1.389 4.988 10.916 198
Wars 0.689 2.267 0 10 241
Democracy 0.622 0.486 0 1 241
Life expectancy 70.091 7.043 38.964 81.294 239

Notes: PW refers to population weighted as in Burke et al. (2015b). Agricultural output has
been rescaled by 1000.
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Table 2: Summary statistics by main region

Variable Mean Std. Dev. Min. Max. N

African Region
Emigration rate 0.023 0.029 0.001 0.2 193
Agricultural output (PPP $) 1886.986 3897.879 10.954 36403.196 187
Agricultural productivity (PPP$/ha) 21.764 36.818 0.637 269.441 187
Temperature PW (deg. C) 24.514 2.787 18.911 28.998 190
Precipitations PW (mm) 12.361 5.735 1.541 28.432 190
GDP per capita (log) 5.792 0.888 3.812 8.997 172
Wars 1.005 2.433 0 10 193
Democracy 0.332 0.472 0 1 193
Life expectancy 49.133 7.77 30.001 72.399 193

Asian Region
Emigration rate 0.033 0.049 0 0.351 225
Agricultural output (PPP $) 13280.447 48647.871 13.149 536769.651 225
Agricultural productivity (PPP$/ha) 73.092 72.739 0.465 456.727 225
Temperature PW (deg. C) 21.483 6.001 -2.18 27.986 225
Precipitations PW (mm) 16.68 7.357 1.619 42.019 225
GDP per capita (log) 7.102 1.185 4.339 10.916 205
Wars 1.16 2.846 0 10 225
Democracy 0.618 0.487 0 1 225
Life expectancy 64.492 8.369 27.22 79.954 225

Latin American Region
Emigration rate 0.036 0.056 0.001 0.351 97
Agricultural output (PPP $) 8692.067 19310.381 41.119 140549.477 97
Agricultural productivity (PPP$/ha) 35.82 32.18 2.436 157.599 97
Temperature PW (deg. C) 21.202 4.279 9.598 26.892 97
Precipitations PW (mm) 16.069 7.813 5.532 42.019 97
GDP per capita (log) 7.114 0.952 5.382 10.916 97
Wars 1.031 2.737 0 10 97
Democracy 0.711 0.455 0 1 97
Life expectancy 65.539 7.232 43.993 78.78 97

Notes: see Table 1.
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Table 3: Migration and climate: reduced form FE regressions

All Poor Rich
(1) (2) (3)

Dependent variable: log of emigration rate

Temperature (deg. C) 0.323 0.793* 0.064
(1.20) (1.90) (0.14)

Temperature 2 -0.009 -0.021* -0.004
(-1.27) (-1.94) (-0.22)

Precipitations (mm) -0.039 -0.037 -0.015
(-0.79) (-0.54) (-0.22)

Precipitations 2 0.000 0.000 -0.005
(0.00) (0.14) (-0.85)

R2 0.717 0.725 0.745
Obs. 715 512 203

Notes: the weather variables are population-weighted. Robust t-
statistics in parentheses. * refer to the following cases: * p<0.10, **
p<0.05, *** p<0.01. Column (1) refers to the full sample, column (2)
refers to poor and middle-poor countries, column (3) refers to middle-
rich and rich countries, on the basis of their 1990 per capita GDP. All
specifications include 10-year and country fixed effects.
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Table 4: Migration, agriculture, and weather: OLS FE regressions

All Poor Rich

Output Productivity Output Productivity Output Productivity
(1) (2) (3) (4) (5) (6)

Dependent variable: log of emigration rate

Panel A: Migration and agriculture

Agriculture -0.529*** -0.705*** -0.610*** -0.668*** -0.366 -0.876*
(-3.83) (-4.27) (-3.91) (-3.69) (-0.98) (-1.94)

R2 0.722 0.725 0.728 0.728 0.741 0.747

Panel B: Migration, agriculture, and weather

Agriculture -0.489*** -0.663*** -0.563*** -0.631*** -0.605 -1.013**
(-3.47) (-3.94) (-3.70) (-3.51) (-1.32) (-2.02)

Temperature (deg. C) 0.112 0.160 0.539 0.589 0.001 -0.116
(0.38) (0.56) (1.19) (1.31) (0.00) (-0.24)

Temperature 2 -0.005 -0.006 -0.016 -0.018 -0.004 -0.001
(-0.63) (-0.87) (-1.45) (-1.57) (-0.19) (-0.07)

Precipitations (mm) -0.034 -0.036 -0.033 -0.035 0.103 0.072
(-0.50) (-0.54) (-0.53) (-0.55) (0.51) (0.37)

Precipitations 2 0.000 0.000 0.000 0.000 -0.010 -0.008
(0.03) (0.12) (0.26) (0.29) (-1.31) (-1.15)

R2 0.724 0.726 0.732 0.733 0.750 0.755

Obs. 692 692 506 506 186 186

Notes: the weather variables are population-weighted. Robust t-statistics in parentheses. * refer to the
following cases: * p<0.10, ** p<0.05, *** p<0.01. Columns (1-2) refer to the full sample, columns (3-4)
refer to poor and middle-poor countries, columns (5-6) refer to middle-rich and rich countries, on the
basis of their 1990 per capita GDP. All specifications include 10-year and country fixed effects.
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Table 5: Migration, agriculture, and weather: 2SLS FE regressions

All Poor Rich

Output Productivity Output Productivity Output Productivity
(1) (2) (3) (4) (5) (6)

Dependent variable: log of emigration rate

Panel A: 2SLS
Agriculture -0.959* -1.623** -1.939** -2.101** 0.192 -0.234

(-1.92) (-2.19) (-2.21) (-2.13) (0.37) (-0.31)

Underidentification test (P-value) 0.0000 0.0000 0.0004 0.0058 0.0000 0.0004
Kleibergen-Paap rk Wald F statistic 12.48 8.59 4.41 3.95 6.75 8.42
AR (P-value) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0100
FAR (P-value) 0.0000 0.0000 0.0100 0.0000 0.0300 0.0300

R2 0.717 0.707 0.677 0.680 0.737 0.743
Obs. 692 692 506 506 186 186

Dependent variables: AO AP AO AP AO AP

Panel B: First stage
Temperature (deg. C) -0.464*** -0.270*** -0.261*** -0.153** -0.559*** -0.449***

(-6.84) (-5.20) (-2.75) (-2.04) (-4.41) (-4.73)
Temperature 2 0.011*** 0.006*** 0.005* 0.003 0.018*** 0.013***

(5.93) (3.78) (1.89) (1.13) (4.14) (4.14)
Precipitations (mm) 0.011 0.004 0.010 0.006 0.036 -0.009

(0.61) (0.27) (0.44) (0.30) (0.82) (-0.22)
Precipitations 2 0.000 0.000 0.000 0.000 -0.002 0.001

(0.13) (0.55) (0.38) (0.53) (-0.89) (0.46)

R2 0.990 0.986 0.988 0.983 0.994 0.990
Obs. 692 692 506 506 186 186

Notes: see Table 4. AO denotes agricultural output, AP denotes agricultural productivity. Panel A presents results
of the 2SLS (second stage) estimates, while Panel B reports first stage results. All specifications include 10-year and
country fixed effects.
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Table 6: Migration and agriculture: 2SLS results for regional samples

LAM Asia Africa OECD
(1) (2) (3) (4)

Dependent variable: log of emigration rate

Agricultural output -3.531** -2.177** 1.196 -0.756
(-2.48) (-2.13) (0.87) (-0.62)

R2 0.724 0.766 0.635 0.705

Agricultural productivity -1.920** -3.038** 1.220 -1.695
(-2.31) (-2.32) (0.88) (-1.17)

R2 0.821 0.737 0.649 0.713
Obs. 97 225 209 117

Notes: see Table 1 and 5. LAM denotes the Latin American region. All specifica-
tions include 10-year and country fixed effects.
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Table 7: Migration, agriculture, and weather: 2SLS FE regressions with additional controls

All Poor Rich

Output Productivity Output Productivity Output Productivity
(1) (2) (3) (4) (5) (6)

Dependent variable: log of emigration rate

Panel A: 2SLS
Agriculture -0.926* -1.508* -2.083** -2.412** 0.034 -0.750

(-1.73) (-1.96) (-2.24) (-2.14) (0.04) (-0.73)
GDP per capita (log) -0.176** -0.097 0.038 0.098 -0.338** -0.278

(-2.26) (-1.25) (0.33) (0.76) (-2.16) (-1.48)
Wars 0.010 0.012 0.009 0.017 -0.050 -0.053**

(0.71) (0.89) (0.59) (1.12) (-1.59) (-1.99)
Democracy 0.029 0.008 0.035 0.030 -0.183 -0.223

(0.28) (0.08) (0.30) (0.26) (-0.50) (-0.63)
Life expectancy 0.008 0.011 0.016 0.011 0.022 0.044

(0.48) (0.63) (0.77) (0.55) (0.46) (1.08)

R2 0.725 0.719 0.672 0.666 0.771 0.782
Obs. 641 641 465 465 176 176

Dependent variables: AO AP AO AP AO AP

Panel B: First stage
Temperature (deg. C) -0.575*** -0.349*** -0.383** -0.202 -0.386*** -0.324***

(-7.51) (-5.62) (-2.42) (-1.44) (-2.84) (-3.42)
Temperature 2 0.012*** 0.007*** 0.006* 0.003 0.013*** 0.011***

(6.02) (4.24) (1.67) (0.91) (2.77) (3.13)
Precipitation (mm) 0.008 0.007 0.008 0.010 -0.018 -0.062*

(0.40) (0.39) (0.33) (0.49) (-0.40) (-1.93)
Precipitation 2 0.000 0.000 0.000 0.000 0.001 0.003**

(0.42) (0.41) (0.56) (0.34) (0.51) (2.30)
GDP per capita (log) 0.027 0.067*** 0.071* 0.086*** 0.032 0.072*

(0.96) (2.73) (1.93) (2.67) (0.73) (1.85)
Wars -0.005 -0.002 -0.005 -0.001 -0.008 -0.005

(-1.39) (-0.53) (-1.19) (-0.35) (-1.12) (-0.75)
Democracy -0.048* -0.043 -0.047 -0.043 -0.037 -0.096

(-1.67) (-1.61) (-1.57) (-1.55) (-0.41) (-1.06)
Life expectancy 0.022*** 0.015*** 0.020*** 0.015*** 0.033*** 0.023***

(7.17) (5.11) (6.02) (4.52) (3.31) (2.93)

R2 0.992 0.989 0.991 0.987 0.995 0.993
Obs. 641 641 465 465 176 176

Notes: see Table 5. Robust t-statistics in parentheses. All specifications include 10-year and country fixed
effects.
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Table 8: Migration and agriculture: LIML regressions

All Poor Rich

Output Productivity Output Productivity Output Productivity
(1) (2) (3) (4) (5) (6)

Dependent variable: log of emigration rate

Agricultural output -0.980* -1.694** -2.258** -3.000* 0.242 -0.125
(-1.87) (-2.13) (-2.03) (-1.73) (0.44) (-0.14)

R2 0.716 0.704 0.649 0.600 0.736 0.741
Obs. 692 692 506 506 186 186

Notes: see Table 5. Robust t-statistics in parentheses. All specifications include 10-year and
country fixed effects.
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Appendix A

Table A.1: 2SLS adding GDP per capita as control

All Poor Rich

Output Productivity Output Productivity Output Productivity
(1) (2) (3) (4) (5) (6)

Dependent variable: log of emigration rate

Agriculture -0.826** -1.414** -2.165** -2.553** -0.257 -0.321
(-2.01) (-2.20) (-2.20) (-1.98) (-0.72) (-0.64)

GDP per capita (log) -0.186** -0.110 -0.032 0.022 -0.188 -0.170
(-2.43) (-1.45) (-0.27) (0.16) (-1.37) (-1.21)

R2 0.727 0.722 0.643 0.632 0.780 0.782
Obs. 639 639 460 460 179 179

Notes: see Table 5. Robust t-statistics in parentheses. All specifications include 10-year and country
fixed effects.

Table A.2: 2SLS adding wars as control

All Poor Rich

Output Productivity Output Productivity Output Productivity
(1) (2) (3) (4) (5) (6)

Dependent variable: log of emigration rate

Agriculture -0.627 -1.322* -2.057** -2.348* -0.226 -0.273
(-1.52) (-1.94) (-2.16) (-1.94) (-0.63) (-0.52)

Wars 0.015 0.013 0.003 0.014 -0.033 -0.033
(1.10) (0.97) (0.16) (0.75) (-1.47) (-1.47)

R2 0.727 0.723 0.652 0.648 0.779 0.782
Obs. 639 639 460 460 179 179

Notes: see Table A.1.
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Table A.3: 2SLS adding political institutions (democracy) as control

All Poor Rich

Output Productivity Output Productivity Output Productivity
(1) (2) (3) (4) (5) (6)

Dependent variable: log of emigration rate

Agriculture -0.644 -1.328* -2.116** -2.419* -0.166 -0.193
(-1.54) (-1.94) (-2.19) (-1.94) (-0.47) (-0.37)

Democracy 0.065 0.046 0.103 0.081 -0.284 -0.285
(0.64) (0.47) (0.99) (0.76) (-0.75) (-0.76)

R2 0.727 0.723 0.648 0.643 0.779 0.781
Obs. 639 639 460 460 179 179

Notes: see Table A.1.

Table A.4: 2SLS adding life expectancy as control

All Poor Rich

Output Productivity Output Productivity Output Productivity
(1) (2) (3) (4) (5) (6)

Dependent variable: log of emigration rate

Agriculture -0.712 -1.524** -2.060** -2.276** -0.479 -0.496
(-1.51) (-2.04) (-2.24) (-2.03) (-0.81) (-0.63)

Life expectancy 0.002 0.009 0.013 0.007 0.024 0.016
(0.11) (0.60) (0.71) (0.42) (0.70) (0.51)

R2 0.726 0.718 0.653 0.653 0.779 0.782
Obs. 639 639 460 460 179 179

Notes: see Table A.1.
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