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Abstract. The complexity of integrated assessment modalglg) prevents the direct appreciation of
the impact of uncertainty on the model predictiohowever, for a full understanding and
corroboration of model results, analysts might ling, and ought to identify the model inputs that
influence the model results the most (key drivetee direction of change associated with the
variation of a given input and the overall modeusture (interaction analysis). We show that such
information is already contained in the data setipced by Monte Carlo simulations commonly used
in IAM studies and that can be extracted from ithwut additional calculations. Our discussion is
guided by an application of the proposed methodetotp the well-known DICE model of William
Nordhaus (2008). A comparison of the proposed niktlogy to approaches previously applied on
the same model shows that robust insights conagrttie dependence of future atmospheric
temperature, global emissions and current carbsts @nd taxes on the model’s exogenous inputs can
be obtained. The method avoids the fallacy of arpdeeming the important factors based on the sole
intuition.

July 2012
JEL Classification: H21, H23, H87, 044, 013, Q54Q5

Keywords: Uncertainty, integrated assessment matielate change, global sensitivity analysis

Corresponding author: *Emanuele Borgonovo, ELEUWSiversita Luigi Bocconi, via Roentgen 1, I-
20136 Milano, Italy. E-mail: emanuele.borgonovo@aaiconi.it.



1 INTRODUCTION

Climate change is a very complex phenomenon withajlconsequences reaching far into the future.
As such, climate change (CC henceforth) is charaet: by ample uncertainties as to its causes as
well as its impacts. Uncertainty permeates the etnn evaluation of damages and of mitigation
policies. Economists use integrated assessmentlsndd/s) to perform long term analysis of the
economic effects of climate change. This practoeat free from criticism (see Tol, 2003; Weitzman,
2009); yet, scientific models are today’'s internaei@is between science and policy. When
environmental and climate change issues are caesidéAMs play a central role in aiding policy
makers during the formulation of mitigating stragsgand risk management plans. These plans are
very complicated machines due to the intricacyhefggthenomena under investigation, their space and
time scales and the variety of features they caepttanging from physical laws to socio-economic
aspects. This makes it impossible to have a duwederstanding of the relationship between the
endogenous and exogenous variables. Climate stieaimd decision-makers are then exposed to the
risk of drawing conclusions without a full apprama of the model's behavior and of the most
critical assumptions influencing the outcomes. Thénerates an issue of trust in model results
(Risbey et al., 2005). Furthermore, uncertaintiesegated by our partial understanding of the laws
governing the social-economic-environmental phem@mender investigation, by their intrinsic
variability or by the lack of data, characterizetbthe model building and the result interpretation
phases (Apostolakis, 1990; Bernstein et al., 20@8bster, 2009). In these circumstances it is even
more important that “the standard of quality for dats must be high, lest model use falls into
disrepute and stakeholders reject the use of maltdgether” (Saltelli and D’Hombres, 2010, p.
302). The problem is perceived in the climate cleaogmmunity (Oppenheimer et al., 2007): for
instance, Bernstein et al. (2009) underline thaafishg consistently with risk and uncertainty asros
the Intergovernmental Panel on Climate Change (lR€gorts is a difficult challenge” (p.3) and that

“observed differences in handling uncertaintiesh®ythree IPCC working groups emerge” (p.1).

How can we overcome these problems when using @Ehaeonomy IAMs? Webster (2009) suggests
that, independently of the IPCC working group af§init is appropriate for the community to produce
more instances of rigorous analysis of uncertdimtyheir respective models and projections. The US
Environmental Protection Agency, for instance, reoceends that model developers and users perform
sensitivity and uncertainty analysis to help deteemwhen a model can be appropriately used to
inform a decision (US EPA, 2009). However, althowgmsitivity analysis (SA) techniques are the
key ingredient needed to draw out the maximum ciéipab of mathematical modeling (Rabitz,
1989), surveys show that the application of thetmesently developed methods is quite limited in
the field of climate change economics. Saltelli &moni (2010) review several papers published in
prominent scientific journals such Ssience andNature and conclude that the most widely utilized

methods are one-factor-at-a-time (OFAT) techniquesnerally defined, OFAT are methods of



designing experiments involving the testing of dasf or causes, one at a time instead of all factor
simultaneously. These methods are quite inadedoateentifying the factors on which to focus
scientists’ or decision-makers’ attention in thegance of uncertainty; furthermore, they undermine

the analysts’ ability of understanding the modédidaor.

The task is however challenging. On the one hamtt oeeds methods that minimize the
computational burden due to the numerical compjegit IAMS. To avoid pitfalls in delivering
information to decision-makers, these methods hesbbust and take all sources of uncertainty into

account.

In this paper we propose a methodology based oet @fsrecent advances in the areas of high-
dimensional model representations and of globatigeity analysis. Our goal is to demonstrate that
insights concerning direction of change, modeldtme and key uncertainty drivers can be directly
extracted from the sample generated by a traditislente Carlo uncertainty propagation procedure,
without the need of ad-hoc sampling plans. Moregtrer computational cost is minimized. Direction
of change is here meant in a global sense, as egptws the traditional local information of
comparative statics. The key, in this respectpibdse the analysis on the high-dimensional model
representation (HDMR) theory of Sobol’ (1993) andbiRz and Alis (1999). HDMR also grants
understanding of whether the endogenous variakj@orese to changes in the exogenous variables is
equal to the superimposition of their individuafeets or whether interactions are relevant (model
structure). The methodology is then complementedhasy use of density-based methods for the
identification of key uncertainty drivers in theepence of both correlated and uncorrelated exogenou

variables.

Numerical experiments are performed using one eflist known IAMs, Nordhaus’ DICE model.
The results show that a systematic applicatiorheéé methods provides several crucial insights to
both analysts and policy-makers. Furthermore, ao@a pitfalls in the identification of the variasl

and areas on which to focus additional informatiolection and/or modeling efforts.

The remainder of the paper is organized as folld®ection 2 reviews the existing literature and
provides a brief snapshot of how global sensitidtyalysis methods are, or are not, being used.
Section 3 presents our proposed methodology, wlhestienation and computation aspects are
considered in Section 4. The global SA is appliadttte DICE and the results of this exercise are

presented in Section 5. Concluding remarks closgéper.

2 GLOBAL SENSITIVITY ANALYSIS METHODS IN IAMS: A CURSORY

LITERATURE REVIEW

There are many competing IAMs that are being usedralyze the role of uncertainty in the

economics of climate change. The publication of $tern Review (Stern, 2007) re-ignited a debate



on the performance of IAMs under different parame#tions and the policy conclusions that can be
drawn from the results. A quick web search usingi¢esuch as “climate change, uncertainty and
sensitivity” would likely bring forth the series oébuttals from Dietz et al. (2007a, 2007b), Norgha

(2007a, 2007b), Stern and Taylor (2007) and Tol éade (2006, 2007). Weitzman (2007) focused
on the sensitivity of model outputs primarily teetibhoice of the discount rate and to a few other
selected model inputs. However, a literature reviews that the same critical scrutiny is rarely

performed on the quantitative performance of diffedAMs and the robustness of their formulation.

IAMs are becoming increasingly used as a tool toysthow uncertainty and ambiguity affect policy
makers’ decisions regarding climate change. Goluh. €2011) provide a comprehensive overview of
different approaches used to model uncertainty vamplying IAMs. Millner et al. (2010), Lemoine
and Traeger (2011), and Iverson and Perrings (286€yecent examples of applications using the

DICE model to study these areas of decision science

Monte Carlo simulation to propagate uncertaintyniodel inputs is becoming part of best practices in
the 1AM literature. It has been used for an undetyaanalysis of the DICE model (Nordhaus, 1994,
2008) and in different vintages of the PAGE moditdfe, 2006). It is employed in a recent study by
Dietz (2011) in an assessment of catastrophic ténchange based on the PAGE model and by
Nordhaus and Popp (1997) using DICE and Popp (208#hg ENTICE, an extension of the DICE
model. Uncertainty analysis conveys to decision emakthe uncertainty in model predictions,
avoiding the risk of overconfidence in model fortsa However, for a full understanding and
corroboration of model results, analysts might biéng to (and ought to) identify the model inputs
that influence the model results the most (keyatsy, the direction of change associated with the

variation of a given input and the overall modelisture (interaction analysis).

We are aware of only three studies devoted to pipéication of methods similar to the ones proposed
in this paper to study the effects of uncertainty I&Ms. van Vuuren et al. (2008) apply a
probabilistic approach to an energy model, Hofle(2008) use the FAIR IAM and Anthoff and Tol
(2011) explicitly address the effects of uncertaioh the social cost of carbon (current damages
caused by each unit of emissions) using the FUNMeahadn all cases, Monte Carlo simulations are
used to propagate uncertainty and the resultsasietisimulations are post-processed using either raw
correlations or standardized regression coeffisietat signal the magnitude of the impact that
parameter uncertainty has on model outputs. Thdit8mature clearly describes the weaknesses of
using correlations or standardized regression wiefits as a methodology for post-processing the
Monte Carlo results. These limitations are maiikéd to their poor performance in the presence of
non-linearities and interactions (Campolongo anltefia 1997) so that several authors have argued
in favor of the utilization of more robust methg&obol’, 1993; Rabitz and Alis, 1999; Saltelli &t a
2004, 2008).



Generally speaking, IAMs are used to evaluate thrgg Iterm implications of climate-economy
interactions and to calculate the damages assdomtl current and future emissions and what an
optimal policy intervention (usually in the form aftax) might be. We scanned the existing litematur
of studies that calculate the social cost of carbororder to understand how modelers use SA
methods when making these calculations. Our stapimint is the list of studies covered by Tol
(2008) in his meta-analysis of the range of es@saf the social cost of carbon. Three IAMs emerge
as the most widely applied and commonly cited @ literature: Richard Tol's FUND, Chris Hope's
PAGE and the DICE model of William Nordhaus. In ga, the studies based on the FUND model
handle uncertainty through the use of probabilististributions for certain model inputs. They
generally employ some type of scenario analysisreviesults from different modeling runs are
displayed using alternative values of model inpftsnterest, such as discount rates. The PAGE
model uses probabilistic distributions of inputsaeocount for uncertainty and presents results as
probability distributions rather than single detaristic values. As to the DICE model, Nordhaus
(1994) performs a SA in two steps. A global OFAX IS first performed to determine the eight most
influential inputs. These are then subjected toetlamty analysis, with distributions assigned ldase
on expert opinion. Uncertainty analysis is alsofgrened in later studies of the model (Nordhaus,
2008). In general, many of the cited studies in (R0I08) acknowledge the existence of uncertainty
and attempt to perform some type of SA. This isallguaccomplished by altering the values of a
certain targeted inputs, often the discount raté/anclimate sensitivity, to test outcomes under
different scenarios. The tendency is, therefor@eidorm specific sensitivity questions, and noleto

the model undergo a systematic investigation thnds®y methods.

The results of an overview of over 1000 papersiphétl in the literature in prominent environmental
and climate change journals is presented in aatitee review performed by the authors and briefly
presented in the appendix. The findings are inwith those of Saltelli and Annoni (2010) who show
that most of the papers use OFAT methods, whostations are well known, while no application of

global methods is recorded. Leaving the detaithécappendix, the main findings of the search @n b

summarized as follows:

1. there is no unique way of understanding the temsitigity analysis;

2. there is no common protocol for the use of SA mashdhus, one does not have a shared set of
tools to answer questions such as: what is thet esexsitivity analysis question that we are
asking? what is the most appropriate method fotable?

3. the use of sensitivity methods differs across emwirental and climate change journals. Global SA
methods are attracting growing interest in the mmnental modeling field. The recent
appearance of these techniques in multiple papebdisped in a special issue on integrated
modeling and policy issues Environmental Modeling & Software (Volume 26, Issue 12) is a

clear sign of the fact that this topic is hot ie #nvironmental modeling community. However, in



journals that focus on climate change modeling (esgecially for IAMs), while SA is often
evoked or performed - and in some instances extensivestigations are carried out - the
application of the most recently developed (andtrimdermative) methods is still lacking.

4. There is an issue of awareness: sensitivity metisoiisble to answer questions that climate

change modelers ask are already available, butabpgar not to be known to analysts.

3 GLOBAL SENSITIVITY ANALYSIS: SETTINGS AND METHODS

By global sensitivity analysis one means the prdissio evaluation of a model sensitivity, in the

presence of uncertainty in the model inputs. Foymbdt Q, O R" be the set of possible values that
the model inputs can assume a(@, ,B(Q, ),P,) denote the corresponding probability space.
F,(X) denotes the joint cumulative distribution functi@®@DF) of the model inputs andf, (x)

their density. F, (X) is assigned by the analyst based on her stateefdledge about the model

inputs.x denotes one of the possible realizations of thdam vectoX. We denote by:

y=g(x):Q, OR" - R (1)

the relationship that links the model inputs te thodel output. The analytic expression @fis,

usually, not explicitly known, being the result elborate calculations of complex computer codes.

BecauseX is uncertainy becomes a random variable, denoted/byhe associated probability space

is (Q,,B,,R), F(y) and f,(y) denote the CDF and density\gfrespectively.

Performing a global SA means propagating uncestaintough the model, either analytically or
numerically, to obtairy (Reilly et al., 2001; Forest et al., 2002; Berirstet al., 2009; Webster,
2009). Numerical uncertainty propagation goes utlkderheading of Monte Carlo simulation, which
covers the various sampling generation methodsqlSgbasi random sequences, Latin Hypercube
sampling, etc.)Independently of the random number generation #lgor a sample of sizél is
produced and the model is evaluakétimes. The cost of the analysisGs N model runs, as noted in

the next section.

An integral part of a global SA is the statementha goals of the analysis in order to identify the
most appropriate methods and avoid misleading osrats. In this respect Saltelli and Tarantola
(2002) introduce the concept of SA setting (se® &altelli et al.,, 2004, 2008; Borgonovo and
Tarantola, 2008; Borgonovo, 2010). A setting isaywo frame the SA quest so as to clearly identify

its objectives. In this paper we make use of tileviang settings:



1. Model structure: to determine whether the endogenariable behavior is the result of the
superimposition of individual effects or it is deiv by interactions;

2. Direction of change: to determine what is the eig@dalirection of change in the endogenous
variable due to individual or simultaneous chariggbhe exogenous model inputs;

3. Factor Prioritization: to determine the key undetta drivers, namely the factors on which
resources should be focused in data and informatigiection to most effectively reduce

variability in a model's predictions.
We now discuss each of these settings in turn.
3.1 MODEL STRUCTURE

The understanding of the structure of a model hguiput mapping requires the assessment of
interactions, as shown below. Assume that the mdglping g(X) is integrable (thus, in principle
even non-smooth). Therg(X) can be written exactly as (Efron and Stein, 19&bol’, 1993;
Rabitz and Alis, 1999):

g(x) = gﬁigi (>§)+igi,j(>ﬁ,><-)+---+ O 0 XpX g X, ) )

i<j

where:
6 = E,[909) = [..] 900 ] o

6.06) = E[9091 X, =x1-go =[..] 90x) [] oF, o

0, (% %) = E[900 1 X, =%, X, =%, 1-6,06) =9, (%)~ g, =[] 9) 1 o

s=1,s%i,j

Eq. (2) is called the high-dimensional model repngéation (HDMR) of g(x) (Rabitz and Alis,

1999). In (3)g, is the average value gfover Q. ; g,(x) accounts for the individual effect o,
O ()gyxj) accounts for the residual interactions of modplis X, , Xj , and so on. Eq. (2) states

that g(x) is exactly reconstructed by the sum of the fumgti the right hand side of (3). Egs. (2)

and (3) provide the multivariate “integral” expamsiof g(X) .

Assume now thag(X) is square integrable. Then, by the orthogonalitthe functions in eq. (3), by

subtractingg, from g(X) one obtains the complete decomposition of theanag of Y:



VL [Y] = Z\/I +Zvij + Vo, 4)
=

i<j
where the generic term of ordein eq. (4) is given by:

A\ jgij,iz,...irdFildEZ e %)

1;i2 -----

On the basis of (4) and (5), Sobol’ (1993) intragllithe sensitivity indices of ordedefined as:

S =Vi1,i2,..jr 6
1igde T VX [Y] (6)

Special attention is deserved by the first anddke order sensitivity indices, defined respedyivas:

v Vi [E{YIX}]

TEVM T VM (=5 g
and:
e e M, _BVYIXE
TEL VM v (=t ®

In eq. (8), the symbolX , denotes all factors buk, . Disentangling the contribution of single

variables and of interactions to the overall modelability (Setting 1) is quite naturally addreddsy
applying the functional ANOVA decomposition and thesociated sensitivity measures reported in

(6), (7) and (8). The sum of these variance-baseditvity measures provides indications on model

structure. In the casEi’LlSl =1 the model is additive, that is, its response ésekact superimposition

of the individual effects of the exogenous variallenversely, ifZi’LlSl <1 interaction effects are

present. The lower the sum of the first order iadiis, the higher the relevance of interactions.

3.2 DIRECTION OF CHANGE

Setting 2, the expected direction of change ineih@ogenous variable, can be addressed through the

investigation of functiong), + g, (X ) . Note that, from the second equation in (3), weeha

E[g(x) | X; =x]=0,(x) + 9, )

Thus, g, + g, (%) represents the conditional expectation@fx) as a function ofx . In particular,

if g(x) is additive, theng; (x) + g, displayes the the exact dependence of YXqn Thus, we are



able to understand whether Y is a monotonic funatib X, with no approximation and for all values
of X.. If g(X) is not additive, then eq. (9) is a trend line tlfdws us to understand the dependence

of Y on X, as all possible values of the remaining model ispre averaged. Thus, there is a

difference between comparative statics in the sefs8amuelson (1947) and comparative statics
performed using an integral approach, like the athepted here. By differential comparative statics,

one obtains a local information, namely the vasmatiate ofY around one given point in the input

parameter space for a small variationfn. On the basis of eq. (9) one obtains a globarimétion

about what happens ©@(X) as X, varies over its entire range.

3.3 FACTOR PRIORITIZATION

The identification of key uncertainty drivers (s&gt 3) may appear to be linked to the discussion
above on variance decomposition, suggesting tleaitiaal parameter could be the one which has a
significant impact on the endogenous variable(sianae. However, it is well known that variance is
not a good summary measure of uncertainty, especrdhen the distributions are skewed or
multimodal, and when inputs are correlated, whigHhikely the to be the case in many natural
phenomena, including climate change. In this c&mgonovo (2007) proposes a better suited

sensitivity measure, defined as follows:

& =2 E[506) 10
where:
§(%) = |, (%) = Fy o ) (11)

S (x) measures the separation between the unconditiistabution of the model outputf] (y)]

and the conditional model output distribution giwaat model inputX; is fixed atx, [ fY‘X, — (N1

Geometrically, 5 (x ) is the area enclosed betwedn(y) and fY‘X_:& (y).

It can be shown thad possesses the following convenient propertieqidijnalization to unity, i.e.

0<4 <1, i=L12,..n; (i) joint normalization: J,, , =1; (iii) scale invariance: if u(Y) and

t(Y) are two monotonic functions, therd"™ =3 = 4" . The first property states that each

exogenous model input has an "importance indextictv lies between 0 and 1. In particular, an

exogenous model inpuX; has null importance ifY and X; are independent. The second property

states that the joint importance of all model ispist unity. The third property of scale invarianse

desirable for two aspects. The first one emergasumerical estimation. In several applications the



output of a Monte Carlo simulation is sparse omspawide range. This could bring about inaccurate
estimation of sensitivity measures. To improve nuoa¢ precision, analysts often resort to a
transformation of the model output (usually, a tagisformation). Scale invariance insures thagraft
any monotonic transformation the results of SA nenumaltered. The second reason is that in many
applications the model output is valued throughtibtyufunction. It is a well-known principle of
economic thery that utility functions have an oedjmot cardinal, meaning, so that they can bdyfree
modified through monotonic transformations. Scalgariance, then, insures that results of the
sensitivity analysis remain valid for any chosemtonic utility function. For further discussion on

the decision-making implications of this result 8seicells and Borgonovo (2012).

4 ESTIMATION

The estimation of the sensitivity measures propceasul/e is analytically feasible only in very few
instances and with simple mathematical expresstmatsusually do not represent an environmental or
economic problem. For IAMS, which are complex siatioin tools encoded in dedicated software, the

estimation is forcedly numerical.

An algorithm that strictly reproduces the definitsoin egs (7), (8) and (10) - brute force estinmatio

is associated with a computational cost equal to:
C=Nn’ (12)

model runs, wher&l is the sample size of Monte Carlo simulation anithe number of factorsg\
should be chosen in such a way as to ensure estimatcuracy. AN=1000C is greater than one

million model runs, making the estimation prohngtifor any IAM.

However, computation reduction results have beaohed in the global SA literature. They have led

to a drastic reduction in the estimation of varebased indices, lowerir@to:
C=N(n+2) (13)

model runs for estimating all first and total oradensitivity measures (Saltelli, 2002; Saltelliakt
2010; Campolongo et al., 2011).

The sampling plans in Castaings et al. (2012) lother computational cost of theimportance

measure to:
C=NII (14)

wherer is the number of replicates.

10



Note that an analyst pursuing these estimatioriegfies has possibly to run two different sets of
numerical experiments, one to estim@eand §' and one to estimatd . Moreover, in both cases,

the sampling plans would differ from the utilizatiof a simple Monte Carlo uncertainty propagation.

In this paper we pursue an alternative strategychviginables us to obtain all sensitivity measures
from the same dataset and at the lowest possibiguiational cost. Recent work has produced

notable advances in this respect, lowering the coatipnal cost to:
C=N (15)
There are two main ways to proceed. The first feeesmaking use of a meta-motélere we make

use of the GUI-HDMR software of Ziehn and Tomlid(®). The software allows the estimation of

Sobol’ sensitivity measures of orders 1 and 2 frit@ component functiong, (), g; ; (X ,X)

which are obtained by fitting orthonormal basespulgh a system of equations of the type:

g (X) =T aq(x)

g, (%.%) = X138 o ()@ (%) (16)

where ¢ (x) is an element of a family of orthonormal polynom,ia)'i , ,8;3{q are the corresponding

coefficients,h, h' and h" determine the order of the expansion (see fohéurtetails Ziehn and
Tomlin, 2009).

Following the Cut-HDMR approach (Rabitz and Al€99) one then obtains insights on model

structure, through knowledge of the variance-basewasitivity indices, and on monotonicity, by

plotting the g; (X ) functions.

The second way is to utilize orthogonal projecti@ml is used in Plischke et al. (2012). This

technique allows one to estimate variance-basesltséty measures and, . The method consists of
a reordering of the data set to form a scatterplpt] y, followed by a partitioning of the data set.

The method works as a post-processing algorithmtlamestimation is direct, without the need of a
meta-model. We shall make use of both the Cut-HDiw&a-model and Plischke et al's method in
our analysis. The advantage of combining the megoapproaches is that one retrieves all the
discussed insights without having to utilize anhad- sampling scheme and using the dataset
produced by Monte Carlo simulation. Thus, we addctorent practice where Monte Carlo

propagation has become part of the standard wapefating. In the next section, we discuss the

application of the proposed approach to the DICHe&ho

1 We recall Kriging (see Kleijnen, 2009), Gaussiamutation (Oakely and O’'Hagan, 2004), Cut-HDMR (Rabi
and Alis, 1999; Ziehn and Tomlin, 2010), polynomidaos expansion (Sudret, 2008), and state-dependen
parameter modelling (Ratto and Pagano, 2010).
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5 GLOBAL SENSITIVITY ANALYSIS OF THE DICE M ODEL

To illustrate the proposed methodology we have ehdbe DICE model to perform a global SA.
DICE is one of the most widely acknowledged IAMsedio the expertise of William Nordhaus,
“whose careful pragmatic modeling throughout hi€Blseries of IAMs has long set a standard...”
(Weitzman, 2007, p.713). Nordhaus (2008) charaterthe DICE model as “a global model that
aggregates different countries into a single lefabutput, capital stock, technology, and emissions
The estimates for the global aggregates are hpiftam data that include all major countries, amel t
specification allows for differentiated responsesl aechnological growth.” (p.33DPICE has been
evolving since the early 1990s with many refineraegmid adaptations to answer specific research
questions. We use Version 2007.delta.8 of DfG#e do not go into details concerning the natuik an
general structure of the model because it is congmgively described in Nordhaus (2008). We limit
ourselves to note that the input-output mappingoimposed of a series of interconnected equations
(or submodels), thus generating a multiplicity otputs. These depend on the model inputs, which

are reported in Table Al of the Appendix.

The presentation of the results of our global SAreise in divided in two parts. The first set of
results stems from a comparison of our methodoleigly the sensitivity of the DICE model directly
performed by Nordhaus (2008), where only certaipuia were subjected to uncertainty and
sensitivity analysis. The second set presentsteeful the dataset obtained when uncertainty in all
inputs is considered and the outputs consideredhteegenerational welfare (utility), social cast
carbon in 2005, global atmospheric temperature 1852 global emission level in 2105, and the
optimal carbon tax for 2015. Among the many outgartsduced by DICE we focus on the ones just
mentioned because they are relevant for policy gagp and grant comparison with previous SA
performed using the same model. From an operaimgpoint we proceed in two steps. Firstly we
propagate uncertainty in the model inputs throug@Bvia Monte Carlo simulation; secondly, we

post-process the corresponding dataset using ttieodsedescribed in the previous sections.
5.1 A COMPARATIVE ANALYSIS

Our reference point is the sensitivity analysishef DICE model performed in Chapter 7 of Nordhaus
(2008). It relies on a pre-screening exercise peréd in Nordhaus (1994) and identifies 8 inputs as
key uncertainty drivers, which should be subjedtethcreased scrutiny. We take the outcome of the
pre-screening exercise for granted and use the gaotmbility distributions for the 8 inputs as in

Nordhaus (2008) in order to offer a comparisonhef insights that can be obtained by applying the

methods discussed in this paper. We will removerdsériction on the number of factors later on in

2 Version 2007.delta.8 can be downloaded from Norghau website

http://nordhaus.econ.yale.eBUZE2007_short.gms.

12



the section. Results obtained when all model inputsvaried are then compared to results obtained

when the subset of the a priori selected factocsmsidered.

Table 1 displays the results of an OFAT analysiefDICE model originally presented in Tables 7-
2 and 7-3 of Nordhaus (2008). It conveys the implaat the value of a given model input has on a

model output as the input moves from one to sirdsded deviations from the assumed mean value.

Let x° denote the mean value of the model inputs éxfd+ ko, ,x’,) the point obtained by moving

only X by k standard deviationsk€1, 2, 3, 4, 5, 6§. The percentage changes frop(x°),

0 0 0
Af = 9(x +kai(,xé;)—g(x ) , are taken by Nordhaus (2008) sensitivity measaneisdisplayed both in
o(x

absolute and relative terms. We are then in an Off&mhework.

The numerical values in the Table 1 display thei@alf the social cost of carbon in 2005 (top panel)
and of global emissions in 2105 (bottom panel) wh®an value of the parameters is altered. For
example, when the model inputs are at their medueyahe social cost of carbon in 2005 is
g(x)=$28.10. When the value of GAO, the growth in ltdtctor productivity, is altered by one
standard deviation the value of social cost of carlmcreases to $36.07, a 28% increase from the
mean value. The table shows that for the social @osarbon in 2005 the quadratic coefficient ie th
damage function (A2) has the largest effeck éise., the distance from the mean value) varieg Th
global population limit (POPSYM) and parameter le tcarbon cycle (b12) have a less relevant
effect, while uncertainty in the price of the cambioee backstop technology (PBACK), the rate of
decarbonization in the economy (GSIGMA) and thalt@mount of fossil fuels available for
consumption (FOSSLIM) have no effect at all on sbeial cost of carbon in 2005. When the output
of interest is global emissions in 2105, the growftlotal factor productivity (GAO) has undoubtedly
the largest influence, while the rate of decarbaminin (GSIGMA) and asymptotic population
(POPASYM) have smaller effects. Note that the iefice of a model input depends on the output of

concern.

3 The results are shown only when the parameters meoeg from the mean value in the positive directios1,6]) rather
than in both ones (k=[-3,3]) since, “the resulte aufficiently linear that this displays the patteraccurately” (Nordhaus,
2008, p.129).
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Table 1: Summary of Nordhaus (2008)’ SA Results

SOCIAL COST OF CARBON 2005

Standard Deviation GAO GSIGMA  T2XCO2 A2 PBACK POPAS b12 FOSSLIM
0 28.1 (0) 28.1 (0) 28.1 (0) 28.1(0) 281(0) 2®L  28.1(0) 28.1 (0)
1 36.07 (28)  28.27(1)  38.07(35)  40.99 (35) 28)( 32.14(14) 29.16(4)  28.1(0)
2 48.08 (71)  28.43(1)  46.44(65)  53.89(65) 28)l( 35.91(28) 30.32(8)  28.1(0)
3 51.21 (82) 28.6 (2) 53.49 (90)  66.8(90)  28.1(089.44 (40) 31.61(12)  28.1(0)
4 54.68 (95)  28.76(2)  59.47 (112) 79.73(112) 268)1 42.75(52) 33.04(18)  28.1(0)
5 58.52 (108)  28.92(3)  64.59(130) 92.66 (130) 128) 45.84(63) 34.62(23)  28.1(0)
6 62.8(123)  29.09(4)  69.03 (146) 105.61 (146) 1280) 48.75(73) 36.39(30)  28.1(0)

GLOBAL EMISSIONS 2105
0 19.08 (0) 19.08 (0) 19.08 (0) 19.08 (0)  19.08 (0)19.08 (0)  19.08 (0)  19.08 (0)
1 30.99 (62)  21.95(15)  19.18 (1) 19.18 (1) 198 ( 22.84(20) 19.08 (0) 19.08 (0)
2 50.19 (163)  25.19 (32) 19.28 (1) 19.28 (1) 1908 26.42(38) 19.09(0) 19.08 (0)
3 78.2(310)  28.83(51)  19.38(2) 19.38(2) 198 ( 29.84 (56)  19.1(0)  19.08 (0)
4 103.92 (445)  32.91(72) 19.48 (2) 1948 (2) 19@M8 33.06(73) 19.1(0) 19.08 (0)
5 65.19 (242)  37.36 (96) 19.59 (3) 1959 (3)  19@7 36.08(89) 19.1(0) 19.08 (0)
6 24.61(29)  42.22 (121) 19.7 (3) 19.7(3)  19.07 (038.9 (104)  19.11(0) 19.08 (0)

Source: Nordhaus (2008) and our own calculations.
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It is apparent that this type of OFAT approach doetsgrant a robust identification of the key unaigty
drivers due to the instability of the implied seivitiy rankings with respect to the variation ranger the
social cost of carbon in 2005 the coefficient ia tamage function (A2) is always the most influaritiput,
regardless of the distance from the mean valuevé&sely, at one standard deviatich £1) climate
sensitivity (T2XCO2) is ranked third behind the gtb rate of total factor productivity (GAQ) in the
magnitude of the change from the mean value, lurahking is reversed at two standard deviatioos fr
the mean valuek€2) and then again dsgets larger. The reason is that the method issitrally local and
does not account for the entire variability of thcertain inputs. This limitation is overcome by tise of a
global method. By propagating uncertainty one aistéle distribution of the outputs of interestiraBigure
7-2 of Nordhaus (2008). Then, our approach allomes @ obtain the factor ranking by post-processims)
data set. Using the algorithm of Plischke et @1@) we obtain robust information about the keyautanty
drivers. Figure 1 reports the estimates of Borgon@007)'s g (see eq. (10) for the pre-selected model

inputs again with respect to the social cost obearand global emissions. At the top of each bardlo
confidence intervals obtained from 500 bootstrgpicates using the bias-reducing estimator propased
Plischke et al. (2012) are displayed.

T2xC02

FOSSLIM
GSIGMA ]
PBACK
POPASYM
T2xC02

b

b

[

[
FOSSLIM

[
GSIGMA ]
PBACK
POPASYM

Figure 1:4 ‘s with Pre-Selected Model Inputs for the
Social Cost of Carbon (left) and Global Emissiatigh).

The results displayed in Figure 1 show that at Nd9DOmodel runs the global sensitivity measures are
estimated with high confidence. The ranking is csirat with Table 1 for the social cost of carbmsofar
the coefficient in the damage function (A2), climaensitivity (T2XCO2) and the growth rate of tdtadtor
productivity (GAO) are the most influential inputdowever, the message is not the same with respéloe
level of global emissions in 2105. Table 1 providled message that uncertainty in the growth ratetef
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factor productivity was most important. We see frii figure that whiled for this model input is still the

greatest by magnitude, uncertainty in other fadwreot insignificant in influencing future emisem

We observe a further difference by post-procestiisgputcomes of the Monte Carlo simulations. Theilte
in Figure 1 do not pre-suppose an analysis in wttiehfactor is set at pre-determined values prapuat to
its standard deviation. They instead consider tht@eerange of uncertainty in both the input andpat
factors. They also display, via the bootstrap,dbefidence level we have in the obtained rankingere is

no analogous information in the OFAT analysis ofdf@aus (2008).

OFAT methods do not reveal interactions, but tleesealso be extracted from the same dataset pradiyce
the uncertainty analysis. To that end we applyGh#-HDMR Matlab code of Ziehn and Tomlin (2009b).

By the analysis of the data set generated from BM@atrlo simulations we obtain values of the secder

sensitivity indices ofz §,; =0.4233 when the output is the social cost of carbon @& and of
ij=1

Zn:\ﬁ’j =0.6053 when the output is global emissions in 2105. Theslees indicate that the model
i,j=1

responds non-additively to the inputs and thatramton effects are relevant. The interaction betwthe
growth in the rate of factor productivity (GAQ) atite price of the backstop technology (PBACK) is th
most influential on the social cost of carbon irD20while the interaction between the coefficianthe
damage function (A2) and the climate sensitivityapaeter (T2XCO2) have the strongest effect onekell
of global emissions in 2105. Figure 2 displays #i#gMR of the most influential interactions for thecsal

cost of carbon in 2005.

Figure 2: Input Interactions for the Social CosCairbon

The figure shows the plot of the bivariate functigp, ; 2XCOZ(AZ,T 2XC 02) representing the interactions

between A2 and T2XCO2, when the output is the $cost of carbon. This second order function ighezi
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convex nor concave and non-monotone. Also, notettiefunctions are not strictly positive or negati
across the entire uncertainty ranges for the interg inputs. When both inputs are at the upperarttieir
uncertainty ranges, the interactive effect is aatigg one, while at the lower end of the rangesdnteractive
effect has the opposite sign. As a result the skooder effects can have either an amplifying anglaning
effect on the first order individual effects. Thpp#cation of these methods thus provides a quativit
dimension to Nordhaus (2008)' statement that “aanm@ration of all the uncertain model inputs taken
together ... may produce unexpected results beadube interactions among the model inputs anchtire
linearity in the DICE model” (p.134).

By plotting the first order terms in the HDMR deqowsition one gathers insights about the directibn o
change and monotonicity when factors vary indivigudrigure 3 shows the impact of variation in cdite
sensitivity (T2XCO2) on the social cost of carbtaft(panel) and of the initial growth rate of tleetinology
(GAO) on the level of global emissions (right pgnéhe two model inputs with most significant HDMR
effects.
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Figure 3: Impact ofjr 2xco2(T 2XCO2) on Social Cost of Carbon (left)
andgeao(GAO) on Global Emissions (right).

As expected, as the value of the climate sensitpgtrameter rises so does the social cost of cadrwhthe
same relationship holds for the effect of the wdteechnological growth on total emissions at thd ef the
century. For both model outcomes the first ordarcfions gi(x) are monotonic. In particular, one can
determine whether they are increasing or decredsingll factors (this information is not reportbdre for
brevity). However, by looking at these graphs aisien-maker can gain insights about whether a facto

tends to increase the social cost of carbon (dvajlemissions) on average.

The above considerations show a major advantagieeofnethods proposed and described in this paper, i
that significant interactions can be identified leifly, rather than simply acknowledged or spetedaupon,

and the direction of the interactive effect carobserved. In both cases, the interactive effeetsan-linear
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and additive to overall variation in the outcomeiales. This simple comparative exercise is arcatdr of

the potential advantages of using global SA metlovegs OFAT methods.

In the next section we expand the analysis corisigled! model inputs. There is no additional congpianal
burden by subjecting all model inputs to uncertaanalysis, as the DICE model solves the same nupfbe
times in the Monte Carlo simulations regardlesshef number of model inputs that are altered. Thpma
advantage, of course, is that any biases or segnjimgiifiable reasons to limit the number of modgbuts
subjected to uncertainty analysis might impaire #&malyst's view of how the model itself acts under

uncertainty.
5.2 RESULTS WHEN UNCERTAINTY IN ALL MODEL INPUTS|S CONSIDERED

We now drop the restriction on the number of inpatsl allow all DICE model inputs to vary. For
demonstration purposes, we assign them the range @% the original value, using a uniform disttibn.
Choosing the width of the interval is admittedlpitnary, so that we repeat the analysis using vaisrof 5%
and 20% with consistent results that are not repldnere but are available upon request. In theneeniof
the analysis we will only display the results idiiig the key uncertainty drivers. The HDMR imageisen
all model inputs are varied are similar to thos€igures 2 and 3 where first order effects are rtamwio and

second order interaction effects are significat mon-monotonié.

We post-process the data from the Monte Carlo sitituls using the methods of Plischke et al. (2@i)
calculate the bootstrapped confidence intervalsdfoFigure Errore. L'origine riferimento non e stata

trovata. displays the importance of the model inputs whendutput of interest is inter-generational utility
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Figure 4: J ‘s with Intergenerational Utility as Model Output

* The images are available from the authors upounerstq
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The dominant input factor driving variation in thdel output is quite clearly the elasticity of tharginal
utility of consumption (B_ELASMU). We note that BLESMU appears in the DICE model as the variable

M in the Ramsey’s equation:

r=p+ulb (17)
wherer is the social discount ratgy is the rate of pure time preferenbds the growth rate of consumption
per capita andu is the elasticity of marginal utility of consummti. i is also known as the coefficient of

relative risk aversion, because the DICE model wsesnstant elasticity of substitution (CES) wtilit

function wherd_(t ) denotes labor force or population:

U e(t).L(1)]=L()| c()™/(1-4)] (18)
B_ELASMU (u) determines the shape of the utility function d@hd relationship between consumption

increases and utility or welfare.

Sterner and Persson (2008) succinctly explain ¢bea@mic logic behind assumptions related to valaeg:

“the higher the value qi, the less we care for a dollar more of consumpi®mve become richer. Since we
expect that we will be richer in the future, whdimate damages will be felt, a highgralso implies that
damages will be valued lower. Thus, a higher valyg implies less greenhouse gas abatement today sunles
for some reason we will be poorer rather than rignéhe future. In this case, a highewould give higher

damage values, which would justify more abatemgm6).

The findings displayed in Figure 4 provide key suppto the argument that decisions affecting the
components of the Ramsey equation and implicity discount rate are of primary importance in IAM
exercises. However, a philosophical discussion lmsé aspects is beyond the scope of this paper and
interested readers have plenty of well-conceivadiss to consult on this topic. Nordhaus (2008%usedel
inputs for the Ramsey equation that sum up to ddénevith observed market rates of return on capital
However, Newell and Pizer (2003) show that marlé¢s of return are not stable over longer peridds o
time, and the effects of minor changes in the walévmodel inputs can have significant effects ordeho
outcomes, as documented in Figure 4. Our analgsirms that this model input is key for results hiso
allows to understand how important this parametelt is also useful to understand how this fastteracts
with other factors in the model. The strongest ratdon is with the exponent in the Cobb-Douglas
production function (GAMA) and the image of the HBMs similar to that of Figure 2 where at certain
combinations of the model inputs in their uncettairanges the interactive effect can be eithertpesor

negative.

Economists and policy makers are not only intecestadrivers of inter-generational utility, which itself is
an abstract concept, but they focus also on pragmatevant calculations that are of concern hsas the

level of total emissions at the end of the centugnd actionable — such as magnitudes of carbas t&¥e
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thus now turn to the results of a SA performed gltre lines just followed, with the major differenthat
we now subject all inputs to uncertainty propagatimd not only those pre-selected by Nordhaus (1994
For ease of exposition we focus on the social ocbstarbon in 2005, global emissions at the endhef t
century, and the rise of global atmospheric tentpegaat the end of the century relative to 1900ja®e in
Nordhaus (2008). We will also consider the effaaftsincertainty on the optimal carbon tax in 20li6¢cs
that should be of concern to policy makers in tharrterm. Table 2 contains descriptive informatbout
how uncertainty affects these outcomes. The ranfesitcomes are non-negligible, as a world tha.%
degrees warmer is likely very different than onattis 2 degrees warmer. They are also in line with
IPCC best estimates of what is required if excessiegative consequences from climate change dre to
avoided. The same can be said for the range of gleenzurrent emissions are inflicting, global engigsiin
2105 and the appropriate carbon tax in 2015 thaldvput us on an optimal trajectory, as calculdigdhe
DICE model.

Table 2: Results from Monte Carlo Simulations

Variable Observations Mean Standard Deviation Min axM
Global Average Temperature 10,000 2.708 0.215 2.014 3.542
Rise by 2105
Social Cost of Carbon in 2005 10,000 27.252 6.126 3.130 55.170
Global Emissions in 2015 10,000 120.664 18.580 5.0 207.545
Carbon Tax in 2015 10,000 40.044 9.113 18.159 &1.98

The table conveys information similar to that preed in Figure 7-2 in Nordhaus (2008) or to thelifiig of
Arigoni Ortiz et al. (2011), who vary specific mddaputs probabilistically in a SA performed on an
adaptation of DICE. By going one step further anstprocessing the results of the probabilisticetiainty
analysis much insight is gained. Figure 5 displigspoint estimates faj and the bootstrapped confidence
interval when the outcome of interest is the sooiest of carbon in 2005 (left panel) and globals=ians in
2105 (right panel).
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Figure 5:4 ‘s with Social Cost of Carbon (left panel) and
Global Emissions (right panel) as Model Outputs
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Uncertainty in the elasticity of capital in the guztion function (GAMA) has the strongest influerwethe
social cost of carbon in 2005, followed by the engrt in the damage function (A3). The climate déitsi
parameter (T2XCO2), the elasticity of marginalityti(B_ELASMU) and the coefficient in the damage
function (A2) are all roughly equally, but muchdeésfluential. The same cannot be said for the rhiogheits
that influence the level of global emissions atene of the century. Of primary importance is tRpanent

in the damage function (A3), followed by the emissi intensity of the economy in 2005 (SIGO0), thdah
growth rate of technological progress per decad&OjGand the exponent in the cost control function
(EXPCOST2).

The left panel of Figure 6 shows that uncertaimtythie initial levels of total factor productivityAQ)
influence atmospheric temperature in 2105 mostioviedd closely by climate sensitivity (T2XCO2),
emissions intensity of the economy in 2005 (SI@@pital elasticity in the production function (GAMAnd
the exponent in the cost control function (EXPCOSTAe same cannot be said of the effects of uaiceyt
on the calculation of the optimal carbon tax lefeel2015 where the exponent in the damage funci@®)

is the most influential, followed by capital elagty (GAMA), initial levels of total factor produistity (AO),
elasticity of marginal utility of consumption (B_BISMU), and the climate sensitivity parameter
(T2XCO02).
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Figure 6: 9 ‘s with Atmospheric Temperature (left panel) and
Optimal Carbon Tax (right panel) as Model Outputs

The SA results for these four policy relevant outes from the DICE model deliver two important
messages. The first is that the relevant modeltshate identified quantitatively rather than thriowgpre-
selection process. The messages here can be cahipatee findings of Nordhaus and Popp (1997) where
the goal was to find which model inputs should beestigated further in order to reduce uncertainty,
according to the costs associated with uncertaisg}f. The second point is highlighted by compgrihe
results from these analyses with the informatioasented in Table 3, where the eight model inputs

examined in Nordhaus (2008) are presented withahlking of theird, ‘s.
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Table 3: Nordhaus (2008)’ Pre-Selected Parameters SA Rank

Pre-Selected Variables Social Cost of Global Emissions Atmospheric Carbon Tax (2015)
Carbon (2005) (2105) Temperature (2105)
A2 22 5 6 10
GAO 7 11 11 3
FOSSLIM 42 26 30 34
GSIGMA 16 36 26 6
PBACK 17 32 29 12
POPASYM 10 12 8 8
T2XCO2 2 3 5 7
B12 12 13 12 21

It is clear that the pre-selection of model inpogsformed in Nordhaus (1994) was correct in incigdine
climate sensitivity parameter (T2XCO2), the coédfitt in the damage function (A2) and the initiabgth
rate in total factor productivity (GAO) since thegch rank in the top ten factors for at least tivihe policy
relevant model outcomes of our approach. The ranmreselected inputs are not nearly as influeatial
for optimal uncertainty management more usefulrméttion could have been obtained if different irgput
had been pre-selected and subjected to increasdbsisn or given priority in information and datallection

if that is a previously limiting factor.

As a next step we consider the rankings of allddléa scores for each uncertain model input wh#fardint
outcomes are considered. The full list of rankirsgprovided in Table A2 of the Appendix. To congepn
space Table 4 summarizes this information repottiegrank correlations and Savage score corremfian
each of the output. The rank correlations are caetpoonsidering the vector of the ranks @fwgh respect
to each of the output. A correlation equal to unityplies that that for the two model outputs under
consideration the most and least relevant fact@®x®actly the same. Each entry in Table 4 displlagsaw
correlations as first entry and the Savage scaoarated by a . Savage scores place emphasis on the
agreement of the key (higher ranked) uncertaintyeds, while raw correlations indicate the relatibip

between all model inputs (Iman and Conover, 198n@blongo and Saltelli, 1997; Kleijnen and Helton,

n
1999). LetR be the rank oK. Then, the Savage ScoreXfis: S§ = z
h=R

jom ol [T 25

. For instance, a factor ranking

first out of 51 has a Savage score of 4.52, a faattking second a score of 3.52, and so on.

When comparing rank correlations to Savage Scareletions we have two cases: a) if the rank catiah
value is smaller than the corresponding Savagessmmrelation value, then there is higher agreemernhe
most important model inputs rather than acrossplits; b) the converse is true if the rank cotrefes are

higher than the Savage score ones.
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Table 4: Overall Correlations and Savage Scores for Model Qputs

Atmospheric  Social Cost of Carbon Tax  Global Emissions Utility

Temperature Carbon (2005) (2015) (2015)
Atmospheric Temperature 1
Social Cost of Carbon (2005) 0.70%13 1
Carbon Tax (2015) 0.789|0.669 0.¢95851 1
Global Emissions (2015) 0.8[06718 0.65]0.599 0.770.717 1
Utility 0.545|0.430 0.73]D.645 0.66%.622 0.55{0.388 1

Overall Table 4 indicates that the important fecfor utility are not the same as those affectitiger policy
relevant outcomes. Among the policy relevant outesnthe social cost of carbon in 2005 and the @htim
carbon tax share the strongest correlation of camdrivers of variation, followed by global emisssoand

atmospheric temperature in 2105.

In general the model inputs can be split into theug of speculative parameters where the valuenis n
empirically known and calculated through projecsi@md the group of inputs that are econometriainane
and depend on statistical analysis. It is commotake the econometric group of model inputs asrgeaed
instead focus on the speculative inputs when paifay sensitivity or scenario analysis. However, vage
shown that uncertainty in both types of inputs poto be influential in affecting model outcomebus,
global SA should be performed considering all madplts, before deeming a set of inputs as infiagnt

since assessing key drivers without an extensieatifative analysis might lead to misleading cosidos.
6 CONCLUSIONS

This paper has demonstrated the usefulness of Iglebaitivity analysis methods in the area of irdésed
assessment modeling for climate change econontibgsl shown that at the same computational coat of
standard uncertainty analysis one can obtain romsghts on direction of change, model structure
(interactions) and key uncertainty drivers by appyrecently developed methods. These insightsigeov
analysts with a deeper understanding of a modehsbior and allow them to robustly identify thetéas on

which to focus additional data collection.

We have discussed both numerical and methodologgmcts of the approach using DICE, one of thé mos
popular models for climate change policy analy§tee results show that uncertainty in the elastioftyhe
marginal utility of consumption, which influencdsetdiscount rate applied, is by far the most inftis
parameter in affecting the dependent variable éndhjective function of the model. The key uncetiai
drivers have been also identified with respect twarpragmatic policy relevant model outputs. Digferes

in ranking of inputs with respect to the model aigphave been analyzed.

The results of this paper highlight the merits effprming global sensitivity analysis alongsideesthtypes
of scenario analysis to explore different outcomieen different parameter values in the model. Trimest

highly visible recent analysis of IAMs in the cliteachange literature revolved around what typecehario
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should be considered as a most reasonable infdoneolicy. The authors of the Stern Review claimtta
scenario with low discount rates and strong ineEmeagational equity is the correct basis, while attayoid

the 'normative’ discussions of discount rates, gsirstead observable market rates of return andragrat
much different conclusions and policy recommendatstioVhile this highlights the usefulness of varied
modeling strategies for different policy or sciintquestions, our exercise has shown the benefiitssing
global sensitivity analysis methods since the twipraaches are not interchangeable and important
information can be taken from both. Lastly, globahsitivity analysis along the lines presented kerdd

be fruitfully conducted on other classes of modelstinely used in climate change policy analysient
computable general equilibrium models for impaceasment to energy system techno-economic models.
These are all topics for future research.
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APPENDIX: A LITERATURE SEARCH ON THE USE OF METHODS FOR SENSITIVITY
ANALYSIS IN CLIMATE CHANGE AND ENVIRONMENTAL MODELLING JOURNALS
A database of 1190 published articles was analyae@avestigate in how many cases sensitivity isnaed

as a structured approach to model output analyslsia these cases, how many papers effectivelythese

most informative methodsThe following table summarizes the findings.

Table: Summary of a Survey on the Use of SensitiyitAnalysis in Articles
Published in Prominent Environmental and Climate Clange Journals

Paper with Word Papers Year of Publication of Paper

Journal Title “Sensitivity” in Applying with Systematic SA Type of Applied
Title, Abstract, or Global SA Approach
Keywords Methods
Climatic Change 230 0 - -
Energy Economics 56 1 2007 ad hoc, local
Environmental Modeling OFAT, ad hoc, non-
and Assessment 40 6 2006,2007,2008,2009,2010 Parametric, variance-
based
Environmental Modeling 137 37 local, screening, non-
and Software From 1999 to 2010 parametric, variance-
based
Environmental Research 22 1 2008 variance-based
Letters
Global Environmental screening, variance-
Change 3 1 2010 based
Journal of Hydraulic local, screening, non-
Engineering 87 4 1993, 1996, 2005, 2009  Parametric, variance-
based
Resource and Energy 17 - - -
Economics
The Energy Journal 20 - - -
Water Research 578 3 2009, 2010 non-parametric,

variance-based

TOTAL 1190 53

In The Energy Journal 20 articles have “sensitivity” in their title abstt or keywords. In none of them a
systematic approach to sensitivity analysis in@odjion with uncertainty is performed.

In Energy Economics 56 papers have the term “sensitivity” in eithelefiabstract or keywords. Of them,
only one utilizes a somewhat systematic sensitatglysis, namely, Tarancon Moran and Del Rio Glezza

(2007) where an ad-hoc approach to sensitivitygoereéd for a specific problem is used. However, the

® In the table the journaScience andNature are not listed because a review of the use ofitsétysmethods in these
journals is offered elsewhere (Saltelli and Ann@&ti;10). The list of journals considered here dasspnetend to be

exhaustive.
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approach does not consider uncertainty. The ren@ibb either consider sensitivity as a synonym of
dependence or investigate sensitivity to specisisuanptions. No works make use of recently developed
global sensitivity methods for uncertainty manageine

In Resource and Energy Economics the picture is similar, with 17 papers having weed sensitivity in their
title, abstracts or keywords, but with none of thestually using a systematic approach.

In Environmental Research Letters 22 studies have the word sensitivity in eithde tiabstract or keywords.
Among these works, Lobell and Burke (2008) askdihestion of the relative importance of uncertastre
temperature and precipitation measurements inngdadi uncertainties in the agricultural impactiohate
change. The authors develop an analytic equatidrstudy its variance. The approach is, in pringipéry
similar to a variance-based global sensitivity #rel/ obtain a particular case of expression (4héntext of
the paper, where interactions are neglected.

In Environmental Modeling and Assessment, 40 papers have the word sensitivity in ethee tillbstract or
keywords. Of these 6 operate a systematic semngitivialysis utilizing nonparametric methods (Futiaret

al., 2010), variance-based methods (Avagliano aadela, 2009), OFAT methods (Hess et al., 2008),
screening methods (Braddock and Schreider, 2008hilas et al., 2007), and a model-specific methnod i
Webby et al. (2009).

In Water Research 578 papers have the word “sensitivity” in thetfletiabstract and keywords, spanning a
time period from 1967 to 2010. Of these, three rioations use a joint sensitivity and uncertaintalgsis
approach. Two works (Sourisseau et al., 2008; 6al. £2011) make use of nhon-parametric techniqoes,
work makes use of variance based techniques (Neumgal., 2009). The remaining papers either apply
sensitivity to answer ad-hoc questions - thus,ystesnatic insight or integration to uncertaintpeformed

- or the word sensitivity is used as a synonyrdegfendence.

In the Journal of Hydraulic Engineering 87 papers have the word sensitivity in their tideveral of them
apply either local methods or OFAT methods. Foyreps utilize a systematic approach to sensitivityhie
presence of uncertainty. Variance based methodsisse in Hall et al. (2005) and in Hall et al. (2P0
Indelman et al. (1996) and Yeh and Tung (1993)yappth variance-based and non-parametric methods.

In Environmental Modeling & Software the number of publications devoted to a systemasie of
uncertainty and sensitivity analysis has been tgcgnowing, actually boosting in 2010, as we aresée.
Out of 137 papers containing sensitivity analysisither title, abstract and keywords and spantliag/ears
1998-2010, 37 make use of systematic sensitiviglyais methods. Of these, 10 were published oraxppe

in year 2010, 3 in 2009, 4 in 2008, 3 in 2007 draremainder in the previous years. For space mease
cannot list them all here, but we can offer somangxes. Papers using screening methods are femirest
Campolongo and Braddock (1999) where the Morrishorbiis applied in the SA of the IMAGE model for
greenhouse emissions and Cryer and Havens (199ewehfractional factorial scheme based on Plackett
and Burman (PB) design is used in the study ofiapadlution model. They are also applied in Séiltet al.
(2010) and Saltelli and Annoni (2010). Non-parafeimethods are applied in Manache and Melching
(2008) in the context of the uncertainty and gldhalof water quality models. Examples of paperdyapg
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variance-based methods are Varella et al. (201@)fdlonieri et al. (2010) in the global SA of crowdels,
Estrada and Diaz (2010) in the global SA of anapltication model. We also recall the algebraic apgin
proposed by Norton (2008) for general environmentatlels. We also note the recently published specia
issue (Volume 26, issue 12) on integrated modeding policy issues that highlighted the use of dloba
sensitivity analysis for environmental models.

A similar search irClimatic Change reveals 230 papers with the word sensitivity ag patheir title or
abstract or keywords. Sensitivity appears in theression “climate change sensitivity”, where itged as a
synonym for dependence. It is also used in theesbmif “feedback and climate sensitivity”, as irh®artz
(2010). 6 articles have the locution “sensitivityadysis” in their title: these are O’Neill and WexI(2000),
Van Der Linden et al. (2003), Gerlagh and van dea&n (2004), Keller et al. (2005), Zickfeld and &mer
(2008), and Bormann (2011). Bormann (2011) actuedlynpares different models in their sensitivity to
climate change, with the word sensitivity used agreonym for dependence. In Van Der Linden et24l08)
sensitivity is performed by using an OFAT approdalKeller et al. (2005) the sensitivity of a snoaver in
mean, minimum and maximum temperature alone andamge in mean temperature combined with a
precipitation change of +10% in winter and -10%simmer is investigated. Comprehensive sensitivity
studies are performed in O’Neill and Wexler (200Bgrlagh and Van Der Zwaan (2004) and Zickfeld and
Bruckner (2008), where series of combinations afewrain variables with changes in inputs and séesar
are explored. However, the most recently develapethods for sensitivity analysis in conjunction hwit
uncertainty have not been applied yet.

Finally, in the journalGlobal Environmental Change, only 3 papers have the word sensitivity in thiie

and only one of them, Saltelli and D’Hombres (203fXpposes the use of sensitivity analysis methods.
Indeed, those authors offer a strong critique efway in which sensitivity analysis has been usethe
debate about climate change in the works of StathTaylor (2007) and Nordhaus (2007a). Saltelli and
D’Hombres (2010) come to the conclusion that theg wawhich sensitivity analysis was used by those

authors proved ineffective in supporting their dosons.
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Table Al: DICE Model Inputs

SA Number Parameter Description

1 AO Initial level of total factor productivity

2 Al Damage intercept

3 A2 Damage quadratic term

4 A3 Damage exponent

5 BACKRAT Ratio initial to final backstop cost

6 ELASMU Elasticity of marginal utility of consunmiph

7 B_PRSTP Initial rate of social time preference ymar

8 C1 Climate-equation coefficient for upper level

9 C3 Transfer coefficient upper to lower stratum
10 C4 Transfer coeffic for lower level

11 DELA Decline rate of technological change peraiie
12 DK Depreciation rate on capital per year

13 DPARTFRACT Decline rate of participation

14 DSIG Decline rate of decarbonization per decade
15 DSIG2 Quadratic term in decarbonization

16 ELANDO Carbon emissions from land 2005(GtC peraile)
17 EXPCOST2 Exponent of control cost function

18 FCO22X Estimated forcings of equilibrium co2 Hing
19 FEXO Estimate of 2000 forcings of non-CO2 GHG
20 FEX1 Estimate of 2100 forcings of non-CO2 GHG
21 FOSSLIM Maximum cumulative extraction fossil lfaie

22 GAO Initial growth rate for technology per deead
23 GAMA Capital elasticity in production function

24 GBACK Initial cost decline backstop pc per dexad

25 GPOPO Growth rate of population per decade

26 GSIGMA Initial growth of sigma per decade

27 KO 2005 value capital trill 2005 US dollars

28 LIMMIU Upper limit on control rate

29 MAT2000 Concentration in atmosphere 2005 (GtC)

30 ML2000 Concentration in lower strata 2005 (GtC)

31 MU2000 Concentration in upper strata 2005 (GtC)

32 PARTFRACT1 Fraction of emissions under contegjime 2005
33 PARTFRACT?2 Fraction of emissions under contegfime 2015
34 PARTFRACT21 Fraction of emissions under contegime 2205
35 PBACK Cost of backstop 2005 per tC 2005

36 POPO 2005 world population millions

37 POPASYM Asymptotic population

38 Qo0 2005 world gross output trillion 2005 US dadl
39 SIGO CO2-equivalent emissions-GNP ratio 2005
40 T2XCO2 Equilibrium temperature impact of CO2 bking C
41 TATMO 2000 atmospheric temperature change @hft900
42 TOCEANO 2000 lower stratospheric temperaturenghgC) from 1900
43 bll Carbon cycle transition matrix

44 b12 Carbon cycle transition matrix

45 b21 Carbon cycle transition matrix

46 b22 Carbon cycle transition matrix

a7 b23 Carbon cycle transition matrix

48 b32 Carbon cycle transition matrix

49 b33 Carbon cycle transition matrix

50 scalel Scaling coefficient in the objectivedtion

51 scale2 Scaling coefficient in the objective fimt
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Table A2: All Delta Rankings for Each DICE Model Input

Model Input Atmospheric Social Cost of Carbon Tax Global Utility
Temperature Carbon 2005 Emissions

A0 1 6 3 5 4
Al 43 43 43 43 43
A2 22 5 6 10 42
A3 8 2 1 1 10
BACKRAT 34 20 27 24 12
ELASMU 19 4 4 11 1
B_PRSTP 29 9 10 15 6
C1 18 8 9 14 23
C3 23 27 20 19 27
C4 30 17 18 28 25
DELA 37 39 40 31 22
DK 24 33 33 38 31
DPARTFRACT 43 43 43 43 43
DSIG 40 37 31 26 32
DSIG2 43 43 43 43 43
ELANDO 39 31 42 42 15
EXPCOST2 5 21 19 4 21
FCO22X 15 7 7 13 17
FEXO 41 38 35 35 41
FEX1 33 30 41 39 24
FOSSLIM 42 26 30 34 13
GAO 7 11 11 3 7
GAMA 4 1 2 9 3
GBACK 36 29 25 25 9
GPOPO 28 25 24 32 39
GSIGMA 16 36 26 6 38
KO 31 10 16 40 8
LIMMIU 43 43 43 43 43
MAT2000 9 19 15 29 40
ML2000 21 35 39 41 30
MU2000 6 28 23 27 29
PARTFRACT1 43 43 43 43 43
PARTFRACT2 43 43 43 43 43
PARTFRACT21 43 43 43 43 43
PBACK 17 32 29 12 16
POPO 20 23 28 30 11
POPASYM 10 12 8 8 5
Qo0 38 24 32 36 26
SIGO 3 22 21 2 28
T2XCO2 2 3 5 7 14
TATMO 35 34 34 33 36
TOCEANO 32 18 22 37 37
b11 12 13 12 21 18
b12 12 13 12 21 18
b21 12 13 12 21 18
b22 11 16 17 20 2
b23 26 40 36 16 34
b32 26 40 36 16 34
b33 25 42 38 18 33
scalel 43 43 43 43 43
scale2 43 43 43 43 43
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