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Abstract
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1. Introduction

National and international agencies routinely launch competitive calls for proposals for conducting
research studies or implementing projects in specific areas of interest. When defining these funding op-
portunities, the agencies face a critical trade-off between the need to contain the spending and the goal of
incentivizing the submission of valuable projects by potential recipients of the call (e.g. research institu-
tions, private firms, individual researchers).

In this note, we study how funding agencies should set the budget caps for these competitive grants.
The natural screening role that budget caps can play is typically overlooked, as they are often set to cover
the expected implementation cost of the project or to exhaust the funds available to the granting institution.
We find that these practical solutions are usually inefficient, even when an agency is fully informed about
the implementation cost.

We develop a model in which a public agency can award a grant to one of many agents to conduct a pre-
defined research project. Each agent can submit a budget proposal to carry out the project. An information
asymmetry arises because the public agency cannot verify the projects available to the agents and prefer-
ences are misaligned. We show that the maximum amount of funding available, i.e. the budget cap, plays
a prominent role in determining the agents’ project choice, and, in particular, whether the agents steer their
research towards the agency’s favorite project. We discuss how the effect of steering on welfare depends
on the level of competition, the cost of public funds and the social value of project implementation. The
model and its insight also apply to procurement of innovation.

Our framework builds on Armstrong and Vickers (2010) who analyze project choice when the principal
does not observe the projects available to the agent, and on Berkovitch and Israel (2004) who solve for the
optimal mechanism in the same context. Both these papers consider a single-agent framework, whilst we
analyze a competitive setting, as in De Chiara and Iossa (2018). Further, unlike these papers, we model a
project submission game where the agents submit a funding proposal along with the project, within the
budget cap set by the funding agency. By determining the budget cap for competitive research grants,
our paper is also linked to De Fraja (2016), who studies the optimal allocation of funding among research
institutions.

2. Model

A public agency wishes to implement a predefined research project, that we call A. For example, A may
be a project for a new electrochemical energy storage technology.1 To this purpose, she can award a grant
to one of M (male) agents. Each agent may be capable of implementing project A and/or project B (e.g., a
novel thermal storage technology). Specifically, an agent has only a project of type A (respectively, B) with
probability PA ≥ 0 (resp., PB ≥ 0), and both projects A and B with probability PAB = 1− PA − PB ≥ 0.
The agency and the agents have misaligned preferences. Projects A and B give the agency utility uH > 0
and zero respectively. In contrast, project A gives zero private benefit to an agent, whereas project B yields
πH . Implementing any type of project costs k > 0, with πH > k, but each euro of funding provided by the
agency costs (1 + λ) > 0, where λ captures the shadow cost of public funds. Each agent privately knows
her own available projects, whereas the probability distribution of the projects is publicly known. The type
of submitted projects is perfectly verifiable. We assume that each agent can carry out only one project and
has enough funding to cover the implementation cost. The agents’ key decisions are whether to participate
in the grant competition if they have project A but could also implement project B with their own funds,
and which budget Ti (or bid) to request to carry out A if they participate in the call. The agency chooses
the budget cap R, which is the maximum funds she is willing to pay for the implementation of project A.
All players are risk neutral.

The sequence of events is as follows. In stage 0, the agency announces R. In stage 1, each agent i
who has a project A decides whether to submit it for implementation together with the budget request Ti.

1E.g., see: https://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/fetproact-04-2019.html.
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In stage 2, the agency observes the submitted proposals and selects the lowest bidder, who receives the
requested funding. Ties are broken randomly. In stage 3, the winning bidder - if any - receives the grant
and project A is implemented. Each of the other agents decides whether to implement a project with their
own funds. We look for the symmetric equilibrium which maximizes the agency’s expected payoff.

3. Analysis

Consider an agent i who only has a project of type A, i.e. i is in state (A). This agent is willing to imple-
ment A if Ti− k ≥ 0, i.e., if the grant he receives if he wins the contest is larger than the implementation cost
k. In contrast, an agent j who has both types of project, i.e. j is in state (AB), can also decide to implement
project B. Therefore, j will participate in the contest and submit a price bid Tj if

Tj − k ≥ πH − k.

In seeking the agency’s optimal choice of R, we can restrict attention to two options. First, the agency can
set a budget cap which induces only firms in state (A) to bid. This is achieved by setting R = k. By doing
so, the agency does not give up any rent to agents of this type as their participation constraint binds. All
agents in state (A) take part in the contest and bid T = k. Agents in state (AB) prefer not to participate.
The agency’s expected utility is:

U(R = k) =
M

∑
j=1

(
M
j

)
(PA)

j(1− PA)
M−j[uH − k(1 + λ)]

=
(
1− (1− PA)

M)[uH − k(1 + λ)].

If there is at least one agent in state (A), the agency obtains uH and pays the winning bid to the winner of
the contest. Agents’ aggregate payoff is

Π(R = k) = M(1− PA)[πH − k].

Second, the agency can set a budget cap that induces agents in (AB) to participate. If so, the agency opti-
mally chooses the minimum budget cap which induces the agents’ participation in (AB), without giving
up any rent to this type of agents, i.e. R = πH . As for the bidding behavior of agents in state (A), there is no
symmetric equilibrium in which they place positive probability on a specific price. Thus, the equilibrium
is in mixed strategy. The implication is that now agents in state (A) earn a rent if they win the contest.

The following lemma characterizes the agents’ equilibrium behavior under this option (proof in ap-
pendix).2

Lemma 1. Let R = πH ; each agent j in state (AB) takes part in the contest and bids Tj = πH ; j implements
project A if he wins and B otherwise; agents in state (A) take part in the contest and, in a symmetric equilibrium,
the cumulative distribution function of an agent’s bids is given by:

F(T) =


0 for T ≤ φ

1−(1−PA)

(
M−1
√

πH−k
T−k

)
PA

for φ < T < πH

1 for T ≥ πH ,

where
φ = k + (πH − k)(1− PA)

M−1.

2There is a close resemblance between the distribution function in the lemma and the price strategy followed by firms under
Bertrand competition with an uncertain number of competitors (see Janssen and Rasmusen, 2002). There is also a link to the literature
on price dispersion, e.g. see Varian (1980).
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Each bid yields the same expected payoff to an agent in state (A), who now obtains more than the cost
of implementing the project. To determine an agent’s expected payoff, we can consider the payoff the agent
would obtain in state (A) when he submits the limit bid T = πH . In that case, the agent wins the contest
only if there is no competitor in state (A). We obtain:

Πi(R = πH) = PA(1− PA)
M−1[πH − k] + (1− PA)[πH − k]

= (1− PA)
[
1 + PA(1− PA)

M−2][πH − k].

Agents’ expected aggregate payoff is obtained by simply summing up each agent’s expected payoff:

Π(R = πH) = M(1− PA)
(
1 + PA(1− PA)

M−2)[πH − k].

To determine the agency’s expected utility, we need to pin down the expected grant given to an agent in
state (A). Let j ≥ 1 denote the number of agents in state (A). The expected winning bid is given by the
expected value of the first order statistic of j draws from F:∫ πH

φ
j[1− F(T)]j−1T f (T)dT,

where f (·) denotes the density function. Thus, the agency’s expected utility when R = πH is given by:

U(R = πH) =
(
1− (1− PA)

M)uH

−
M

∑
j=1

(
M
j

)
Pj

A(1− PA)
M−j

(∫ πH

φ
j[1− F(T)]j−1T f (T)dT

)
(1 + λ)

+
(
(1− PA)

M − PM
B
)
[uH − πH(1 + λ)].

Setting R = πH induces agents in state (AB) to give up implementing their preferred project (B) and
submit project A to the agency, instead. This steering effect increases the probability that the agency obtains
project A. Despite maximizing her own utility, a necessary condition for the agency to prefer setting this
high budget cap is that steering the agents who are in state (AB) towards the implementation of project A
is socially desirable, namely uH − πH(1 + λ) ≥ 0. However, this condition is not sufficient. This steering
effect must be valuable enough so as to outweigh the higher expected cost of implementing project A, due
to the rent that is given up to agents who are in state (A). Let C denote the expected differential cost of
obtaining project A from agents in state (A) when the agency sets R = πH instead of R = k:

C ≡
M

∑
j=1

(
M
j

)
(PA)

j(1− PA)
M−j

(∫ πH

φ
j[1− F(T)]j−1T f (T)dT − k

)
(1 + λ).

The agency’s optimal choice of the budget cap is provided in the following proposition.

Proposition 1. The public agency optimally sets R = πH instead of R = k if and only if this inequality holds:(
(1− PA)

M − PM
B
)
[uH − πH(1 + λ)] ≥ C. (1)

4. Discussion

Competition effect. Stiffer competition as captured by an increase in the number of agents M has ambigu-
ous effects on condition (1). Steering becomes less beneficial when M increases as it becomes more likely
that at least one agent is in state (A). Taking the derivative of the left-hand side of (1) with respect to M,
we obtain:3 (

(1− PA)
M ln[1− PA]− PM

B ln[PB]
)
[uH − πH(1 + λ)] ≤ 0,

3For computational reasons, here we treat M as a continuous variable.
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since 1− PA = PAB + PB ≥ PB. As for the expected cost of steering, the probability that the agency overpays
an agent in (A) with a high budget cap goes up - to see this, note that the derivative of 1− (1− PA)

M

increases in M. However, fiercer competition induces the agents in state (A) to bid more aggressively,
thereby reducing the expected rent.4 Irrespective of the budget cap, the agency is always better off when
competition is fiercer as both U(R = k) and U(R = πH) are increasing in M.

Project value and private benefits. An increase in uH makes it more likely that the agency will prefer
R = πH , whereas an increase in πH has ambiguous effects: although the steering effect shrinks, the effect
on the bidding behavior is inconclusive.5 Our qualitative results continue to hold even when the agency
enjoys some benefits from the implementation of project B, provided that uH is large enough. However,
the more the agency benefits from B, the more difficult it is to satisfy condition (1), and thus more likely it
is that R = K is preferred.

Shadow cost of public funds. Qualitatively, a reduction in λ has the same impact as an increase in uH . By
increasing the net value for the implementation of project A, it makes it more likely that the agency will
prefer R = πH .

Social welfare. The agents’ aggregate payoff is weakly increasing in the budget cap. Since the agency
overlooks the agents’ private benefits when setting the budget cap, steering will be induced too rarely.
Therefore, from a social welfare perspective, the agency chooses R = πH too rarely.

Less conflicting preferences. If project A gives private benefits πL < πH to an agent, setting R = k is never
efficient. The agency should choose either R = πH − πL, or R = k− πL.

5. Conclusions

Budget caps affect agents’ project choice and the level of funds they request. Setting budget caps equal
to project implementation costs is generally suboptimal, even when these costs are known. Higher budget
caps steer researchers’ towards the agency’s favorite projects at the cost of increasing agents’ rents.
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Appendix - For Online Publication

Proof of Lemma 1
First, notice that the agency must set R ≥ πH if she wants to induce participation of agents in state

(AB). However, setting a budget cap higher than πH would generate an (extra) rent for agents in state (A)

4Specifically, the effect of a marginal increase in M on the expected value of the first order statistic of j draws from F is:

− ∂φ

∂M
jφ f (φ)−

∫ πH

φ
j(j− 1)[1− F(T)]j−2T f (T)

∂F
∂M

dT

+
∫ πH

φ
j[1− F(T)]j−1T

∂ f
∂M

dT.

Note that ∂φ
∂M is negative, meaning that the support of the equilibrium bids shifts to the left; ∂ f

∂M is negative, whereas ∂F
∂M is positive.

Hence, the second and the third term in the above expression are negative, which imply that the agents bid more aggressively for a
fixed support.

5While ∂F
∂πH

< 0, the sign of ∂ f
∂πH

is ambiguous.
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and (AB). Hence, R = πH and agents in state (AB) will participate submitting a price bid T = πH . In the
rest of the proof, we focus on the price-bidding behavior of agents in state (A) and we restrict attention to
symmetric equilibria where each agent in state (A) follows the same bid strategy.

Agents in (A) will never submit bids below k, for if they win with such a bid, they will not be willing
to implement the project. In addition, they will not submit bids above πH or their bids will be discarded.
Furthermore, there is no equilibrium in which all agents submit T = k as they would get no surplus
whereas an agent could secure a payoff (1− PA)

M−1[πH − ε− k] > 0 by submitting a bid arbitrarily close
to πH .

We now argue that there is no symmetric equilibrium in which all agents in (A) submit the same bid
T̃ ∈ (k, πH). With a bid equal to T̃ agent i in state (A) expects to get:

Πi(T̃, T̃|AA) =
M−1

∑
j=0

1
j + 1

(
M− 1

j

)
Pj

A(1− PA)
M−1−j[T̃ − k].

An agent in (A) could profitably deviate by submitting T̃ − ε, with T̃ − k > ε > 0, as he would obtain
T̃ − ε− k > 0 with probability one.

We now claim that there cannot be point masses in the equilibrium bid strategy. Suppose that an agent
bids T ∈ (k, πH) with some positive probability. Akin to the argument put forward above, another agent
can gain by placing zero weight on T and positive weight on T − ε.

Moreover, the agents randomize over a connected support. Let f (T) be the probability that an agent in
(A) submits price T. It cannot be that f (T̂) = 0 for T̂ ∈ (T1, T2), with T2 > T1 and f (T1) > 0, f (T2) > 0. In
each instance in which a bid T1 wins, also T̂ wins but yields a strictly higher payoff. Therefore, T1 would
not be part of the equilibrium strategy and f (T1) = 0.

Hence, the equilibrium in mixed strategy is described by the cumulative distribution function of price
bids F(T). To pin down this c.d.f. we need the expected payoff of an agent i who is in state (A) when other
agents adhere to the same strategy. The probability that exactly M− 1− j rivals are in state (A) is:(

M− 1
j

)
PM−1−j

A (1− PA)
j.

In this instance, i’s expected payoff if he bids T ∈ (k, πL) is given by T − k times the probability that each
of the M − 1− j rivals submit more than T, i.e., ((1− F(T))M−1−j[T − k]. Firm i’s expected payoff from
submitting T is

Πi(T, F(T)|AA) =
M−1

∑
j=0

(
M− 1

j

)
(1− PA)

j[PA(1− F(T))]M−1−j[T − k]

= [1− PAF(T)]M−1[T − k].

Agent i must obtain the same expected payoff from each price in which f (T) > 0, or else it would be better
off submitting those prices which are associated with a higher expected payoff. To find the equilibrium
prices, we take the derivative of the above expected payoff with respect to T and we set it equal to zero:

[1− PAF(T)] = (M− 1)PA f (T)[T − k].

This is a differential equation whose solution yields the expression reported in the statement of the lemma.
To see this, consider that the above equation can be rewritten as:

−PA f (T)
1− PAF(T)

= − 1
(M− 1)[T − k]

.

Adopting this change of variables y = F(T) and dy = f (T)dT and integrating∫ y

y0

−PAdy
1− PAy

= − 1
(M− 1)

∫ T

T0

1
T − k

dT

⇔ ln[1− PAy]− ln[1− PAy0] =
1

(M− 1)
(

ln[T0 − k]− ln[T − k]
)
.
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Because at T0 = πH it holds that y0 = 1,

ln[1− PAy] = ln

[
(1− PA)

(
πH − k
T − k

) 1
M−1
]

,

from which it is immediate to recover the expression reported in the lemma once variable y is transformed
back into F(T).
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