
Auctions with Unknown Capacities:
Understanding Competition among Renewables*

Natalia Fabra
Universidad Carlos III and CEPR

Gerard Llobet
CEMFI and CEPR

October 11, 2019

Abstract

The energy transition will imply a change in the competitive paradigm of elec-
tricity markets. Competition-wise, one distinguishing feature of renewables versus
fossil-fuels is that their marginal costs are known but their available capacities are
uncertain. Accordingly, in order to understand competition among renewables,
we analyze a uniform-price auction in which bidders are privately informed about
their random capacities. Renewable plants partially mitigate market power as com-
pared to conventional technologies, but producers are still able to charge positive
markups. In particular, firms exercise market power by either withholding output
when realized capacities are large, or by raising their bids above marginal costs
when realized capacities are small. Since markups are decreasing in realized capac-
ities, a positive capacity shock implies that firms offer to supply more at reduced
prices, giving rise to lower but also more volatile market prices. An increase in
capacity investment depresses market prices, which converge towards marginal cost
when total installed capacity is sufficiently large, or when the market structure is
sufficiently fragmented.
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1 Introduction

Ambitious environmental targets, together with decreasing investment costs, have

fostered the rapid deployment of renewable energy around the world. Installed renewable

capacity has more than doubled over the last ten years and it is expected to further

increase during the coming decade.1 How will electricity markets perform in the future

once renewables become the major energy source?

Whereas competition among conventional fossil-fuel generators is by now well under-

stood (e.g. Borenstein, 2002; von der Fehr and Harbord, 1993; Green and Newbery,

1992, among others) much less is known about competition among wind and solar pro-

ducers (which we broadly refer to as renewables). Competition-wise, there are two key

differences between conventional and renewable technologies. First, the marginal cost

of conventional power plants depends on their efficiency rate as well as on the price at

which they buy the fossil fuel. In contrast, the marginal cost of renewable generation

is essentially zero, as plants produce electricity out of freely available natural resources

(e.g. wind or sun). Second, the capacity of conventional power plants is well known, as

they tend to be available at all times (absent rare outages). In contrast, the availability

of renewable plants is uncertain, as it depends on weather conditions that are forecasted

with error (Gowrisankaran et al., 2016).2 Hence, the move from fossil fuel generation

towards renewable sources will imply a change in the competitive paradigm. Whereas

the previous literature has analyzed environments in which marginal costs are private

information but production capacities are publicly known (Holmberg and Wolak, 2018;

Vives, 2011), the relevant setting will soon be one in which marginal costs are known

(and essentially zero) but firms’ available capacities are private information.

In this paper, we build a model that captures this new competitive paradigm, which

we apply to electricity markets. We show that private information on capacities changes

1In several jurisdictions, the goal to achieve a carbon-free power sector by 2050 will require an al-
most complete switch towards renewable energy sources. The International Renewable Energy Agency
estimates that compliance with the 2017 Paris Climate Agreement will require overall investments in
renewables to increase by 76% in 2030, relative to 2014 levels. Europe expects that over two thirds of its
electricity generation will come from renewable resources by 2030, with the goal of achieving a carbon-
free power sector by 2050 (European Commission, 2012). Likewise, California has recently mandated
that 100% of its electricity will come from clean energy sources by 2045.

2Our analysis applies mainly to wind and solar power, which are the most relevant renewable tech-
nologies. However, strictly speaking, not all renewable power sources share their characteristics. Other
renewable technologies, such as hydro electricity, are storable or have a production that can be managed,
very much like in the case of thermal plants (e.g. biomass plants).
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the nature of equilibrium bidding behavior, no matter how big or small the source of

private information is. We assume that firms’ available capacities are subject to common

and idiosyncratic shocks: the former are publicly observable, the latter are privately

known. Firms compete by submitting a price-quantity pair (i.e., an inverted-L supply

function), indicating the minimum price at which they are willing to produce, and the

maximum quantity they are willing to provide. The auctioneer calls firms to produce in

increasing price order until total demand is satisfied, and all accepted offers are paid at

the market-clearing price (uniform-price auction).

We show that capacity uncertainty mitigates market power, but it does not fully

eliminate it. In equilibrium, firms behave competitively only when the common shock

is so large that all firms but one would have enough capacity to serve total demand,

regardless of their idiosyncratic shocks. In all other cases, market prices add a positive

markup to marginal cost. At the symmetric equilibrium, mark-ups are decreasing in the

firm’s realized capacity, i.e. the higher a firm’s realized capacity, the lower is the price at

which it is willing to supply it. This reflects the standard trade-off faced by competing

firms: decreasing the price leads to an output gain (quantity effect), but it also leads to

a lower market price if the rival bids below (price effect). Since firms gain more from the

quantity effect when their realized capacity is large, they are more eager to offer lower

mark-ups.

In the short run, positive availability shocks induce firms to submit lower bids, leading

to lower market prices. This gives rise to price dispersion, which is inherently linked to

capacity volatility through the effects of strategic behavior. In the long-run, an increase

in capacity investment also depresses expected market prices, which converge towards

marginal costs when total installed capacity is sufficiently large (or when the market

structure is sufficiently fragmented).3

As in standard oligopoly models, entry reduces mark-ups both because of the increase

in the number of firms and because of the expansion in existing capacity. Instead, changes

in the ownership structure (e.g. through mergers or divestitures) have countervailing

effects. On the one hand, mergers make firms bigger, thus inducing them to bid less

aggressively. On the other, mergers also give rise to multi-plant firms, thus inducing

them to submit lower bids. The reason is that multi-plant firms bid according to the

3Bushnell and Novan (2018) reach a similar conclusion in a counterfactual exercise that uses data
from the Californian electricity market.
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average of their plants’ realized capacities, thus flattening the distribution of their total

capacity. The analysis of competition across ex-ante symmetric firms also shows that

concentration results in higher expected prices. The firm which is small ex-ante tends

to submit higher bids, knowing that it is likely to be underbid by its larger competitor.

This asymmetry in bidding incentives is exacerbated the stronger the ex-ante capacity

asymmetries across firms.

A natural question is whether information precision affects bidding behavior and thus

market outcomes.4 We find that uncertainty over firms’ avaialable capacities weakens

their market power. In our model, capacity asymmetries induce firms to compete less

fiercely because their optimal bids tend to be away from each other. However, firms

need to be informed about their realized capacities in order to be aware of their asymme-

tries. Otherwise, if their expected capacities are equal, they bid symmetrically, resulting

in head-to-head competition. As a consequence, the highest profit levels are obtained

when capacities are publicly known, while the lowest ones are obtained under unknown

capacities. In between, when firms are privately informed about their own capacities,

equilibrium profits are higher the more precise is the information about the rivals’ ca-

pacities. This suggests that firms might be better off exchanging information on their

available capacities in order to sustain higher equilibrium profits, at the expense of con-

sumers. Our results thus provide a theoretical explanation to the experimental findings in

Hefti et al. (2019), which are reminiscent of the literature on Treasury auctions (LiCalzi

and Pavan, 2005) showing that noise in the demand function rules out the seemingly

collusive equilibria that arise otherwise (Back and Zender, 2001).

Finally, even though we have motivated our model in the context of electricity markets,

our results may also provide valuable insights in other contexts where auctions are used

and bidders may be privately informed about the maximum number of units they are

willing to buy or sell. To name just a few examples, in Treasury Bill auctions (Hortaçsu

and McAdams, 2010; Kastl, 2011), banks are privately informed about their hedging needs

and, hence, about how many bonds they are willing to buy; in Central Banks’ liquidity

auctions (Klemperer, 2019), banks are privately informed about the volume of toxic

assets they can provide as collateral; or in emission permits auctions, firms are privately

4Lagerlöf (2016) also addresses this question, but he does so in the context of the Hansen-Spulber
model of price competition under cost uncertainty (Hansen, 1988; Spulber, 1995). Our conclusion is
similar to Lagerlöf (2016)’s, even if the drivers differ.
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informed about their carbon emissions and hence about the amount of permits they need

to purchase.5 Likewise, firms have private information on capacities in a wide range

of markets that can be analyzed through the lens of auction theory (Klemperer, 2003),

e.g. the markets for hotel bookings or ride-hailing services, in which firms are privately

informed about the number of empty rooms or available cars. Our model provides a

framework that can account for this source of private information, thus complementing

previous papers that focus on private information on costs or valuations.6 As we argue

below, these two sources of private information have distinct effects on bidding behavior

and thus market outcomes. In particular, market prices tend to be more responsive to

capacity than to cost shocks as the former affect both the price and the quantity offers

made by firms.

Related literature Other recent papers have also analyzed competition among re-

newables by introducing capacity uncertainty (Acemoglu et al., 2017 and Kakhbod et al.,

2018). These papers, unlike ours, assume Cournot competition, i.e., they constrain firms

to exercise market power by withholding output. Acemoglu et al. (2017) focus on the

effects of joint ownership of conventional and renewable plants. They show that joint

ownership mitigates the price depressing effect of renewables as strategic firms withhold

more output from their conventional power plants when there is more renewable genera-

tion.7 Kakhbod et al. (2018) focus on the heterogeneity in the availability of renewable

sources across locations and show that firms withhold more output when their plants are

closely located, i.e., when their output is highly and positively correlated.

Holmberg and Wolak (2018) and Vives (2011) analyze auctions in which firms are

privately informed about their marginal costs rather than about their capacities. In

Holmberg and Wolak (2018) firms compete by choosing price offers, while in Vives (2011)

firms compete by choosing continuously differentiable supply functions. In Holmberg

5Other examples include spectrum auctions (Milgrom, 2004), procurement auctions for a wide range
of goods and services, auctions for electricity generation capacity (Fabra, 2018; Llobet and Padilla, 2018),
or auctions for investments in renewables (Cantillon, 2014), among others.

6While incomplete information on capacities can be captured through incomplete information on
costs or valuations, this approach typically requires marginal costs (or valuations) to be bounded and
continuous. Some papers allow for discrete valuations with a maximum number of units demanded, but
assume that such limit is common knowledge (Hortaçsu and McAdams, 2010), or focus on the empirical
identification of the optimal bids through the lens of the First Order Condition of profit maximization.

7This effect is not present in our model since, in order to focus on the strategic interaction among
renewables, we assume either that conventional power plants are not present, or that they are owned by
independent producers, thus constraining renewable producers from raising prices above the conventional
plants’ marginal costs.
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and Wolak (2018), a lower (higher) cost realization shifts firms’ price offers down (up)

while firms’ quantity offers remain unchanged.8 This is unlike our model in which a

higher (lower) capacity realization shifts the supply function downwards and outwards

(upwards and inwards) as both prices and quantities respond to private information. In

Vives (2011) firms receive an imprecise signal about their costs, which are correlated

across firms. Since the market price aggregates information, firms submit steeper supply

functions so as to produce less (more) when market prices are high (low), which occurs

when marginal costs are likely to be high (low) as well. Hence, due to cost correlation,

private information in Vives (2011) gives rise to less competitive equilibria than under

full information. Instead, in the private values model, the equilibrium of Vives (2011)

converges to its full information counterpart.

Interestingly, the comparison of our paper with Holmberg and Wolak (2018) and Vives

(2011) uncovers a fundamental difference between introducing private information on

costs or on capacities. Private information has two potential effects on bidding behavior:

through the bidders’ price offers and through the quantities they sell. In a private-values

setting with private information on costs, a firm’s realized cost determines its bid (higher

cost firms offer higher prices), but it does not affect (for a given bid) the quantity served by

the rival. Instead, when capacities are private information, a firm’s realized capacity not

only determines its bid (more production is offered at lower prices) but it also affects the

quantity served by the rival.9 This effect makes the equilibrium price offers steeper, as a

firm with a small realized capacity has stronger incentives to raise its bid than if quantities

were not affected by the rivals’ private information.10 This difference also explains why,

in contrast to Holmberg and Wolak (2018) and Vives (2011), the equilibrium in our model

always departs from the one under full information. The properties of our equilibrium

are closer to the ones with positively affiliated signals on costs, even if we assume that

capacity shocks are independent across firms.11

The comparison of our model with the ones in Holmberg and Wolak (2018) and

8More precisely, Holmberg and Wolak (2018) do not allow firms to specify their quantity offers, and
any (unknown) changes in capacities are uncorrelated with cost shocks.

9The reason is that the rival, contingent on being the high bidder, serves the residual demand net of
the firm’s capacity.

10Note that, conditionally on being smaller than the rival, the expected residual demand faced by a
firm is larger the smaller its own capacity.

11With positively affiliated signals, a higher cost signal increases (for a given price) the probability
of selling a higher quantity as the rival’s cost, and thus its price offer, is also expected to be higher.
Therefore, a firm’s quantity is affected by the rival’s private information, just as in our model.

6



Vives (2011) also shows that, with private values, equilibrium market prices tend to be

more responsive to capacity shocks than to cost shocks. The channel is two-fold. First,

as already argued, equilibrium bids are steeper when capacities (rather than costs) are

private information. Thus, changes in the available capacity imply large changes in the

price offers and, consequently, on the market prices. Second, since equilibrium price

offers are decreasing in realized capacities, firms offer lower prices precisely when they

can produce more. Again, this pushes market prices further down in response to positive

capacity shocks.

The remainder of the paper is structured as follows. Section 2 describes the model

and interprets it in the context of electricity markets. Section 3 characterizes equilibrium

bidding behavior when firms’ capacities are private information. Section 4 studies the

impact of private information and information precision on equilibrium outcomes. Section

5 provides some extensions and variations of our main model, including aspects related

to the market structure (an increase in ex-ante asymmetries, entry and mergers) and

market design (a ban on capacity withholding). Last, Section 6 concludes by discussing

what we can learn about competition among renewables. All proofs are relegated to the

appendix.

2 The Model

Two ex-ante symmetric firms i = 1, 2 compete in a market to serve a perfectly price-

inelastic demand, denoted as θ > 0. Firms can produce at a constant marginal cost c ≥ 0

up to their available capacities,12 which are assumed to be random. In particular, the

available capacity of firm i, denoted as ki > 0, is the result of two additive components,

ki ≡ βκ + εi. The parameter β ∈ [0, 1] in the common component captures the propor-

tion of each firm’s nameplate capacity κ that is available. The idiosyncratic shock εi is

distributed according to Φ(εi|κ) in an interval [ε, ε], with E(εi) = 0. As a result, firm

i’s available capacity ki is distributed according to G(ki) = Φ(ki − βκ|κ) in the interval

ki ∈
[
k, k
]
, where k = βκ + ε and k = βκ + ε. We denote the density as g(ki) and

we assume it is positive in the whole interval
[
k, k
]
. We also assume 2k ≥ θ to make

12We can set c = 0 without loss of generality. In the context of renewables, a positive c could reflect the
operation and maintenance variable costs. It could also be interpreted as the opportunity cost of firms
whenever they have the option of selling this output through other channels, e.g. bilateral contracts or
balancing markets.
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sure there is always enough available capacity to cover total demand. Note that firms’

available capacities are positively correlated through the common component, but they

are conditionally independent given β. Firm i can observe its own idiosyncratic shock

but not that of its rival, i.e., available capacities are private information.

Firms compete on the basis of the bids submitted to an auctioneer. Each firm simulta-

neously and independently submits a price quantity pair (bi, qi), where bi is the minimum

price at which it is willing to supply the corresponding quantity qi. We assume bi ∈ [0, P ],

where P denotes the “market reserve price.” We also assume that firms cannot offer to

produce above their available capacity or below their minimum capacity, qi ∈ [k, ki], for

i = 1, 2.13

The auctioneer ranks firms according to their price offers, and calls them to produce

in increasing rank order. In particular, if firms submit different prices, the low-bidding

firm is ranked first. If firms submit equal prices, firm i is ranked first with probability

α (qi, qj) and it is ranked second with probability 1− α (qi, qj). We assume a symmetric

function α (qi, qj) = α (qj, qi) ∈ (0, 1).14 If firm i is ranked first it produces min {θ, qi} ,

while if it is ranked second it produces max {0,min {θ − qj, qi}}.

Firms receive a uniform price per unit of output, which is set equal to the market

clearing price. For bi ≥ bj, the market clearing price is defined as

p =


bi if qi > θ,
bj if qi ≤ θ and qi + qj > θ,
P otherwise.

In words, the market clearing price is set by the highest accepted bid, unless the quantity

offered by the winning bid(s) is exactly equal to total demand. In this case, the market

price is set equal to the lowest non-accepted bid, or to P if no such bid exists (because

all the quantity offered has been accepted).15

The profits made by each firm are computed as the product of their per unit profit

margin (p− c) and their dispatched output. As explained before, both the market price p

as well as firms’ outputs are a function of demand θ and the prices (bi, bj) and quantities

13The implicit assumption is that withholding below k would make it clear that the firm has strategi-
cally withheld output in order to raise prices, thus triggering regulatory intervention.

14Hence, when firms’ quantity offers are equal, α (q, q) = 1/2. We do not specify α (qi, qj) outside of
the diagonal as it is inconsequential for equilibrium bidding.

15Assuming that the market price is set at the lowest non-accepted bid when the quantity offered by
the winning bid(s) equals total demand is made for analytical convenience, with no impact on equilibrium
outcomes. In particular, it avoids situations where firms want to offer a quantity slightly below total
demand in order to push the market price up to the higher bid offered by the rival.
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(qi, qj) offered by both firms. Firms, which are assumed to be risk neutral, bid so as to

maximize their individual expected profits, given their realized capacities.

2.1 Interpreting the Model

The model described above is applicable to a wide range of auction settings in which

firms’ capacities (or demands) have a private information component. As already dis-

cussed, in electricity auctions, the supply of renewable generators depends on their avail-

able capacities, which are subject to idiosyncratic shocks. In emissions permit auctions,

the demand of permits by polluting firms depends on their emissions and abatement

costs. In Treasury Bill auctions, the demand by banks depends on their hedging needs,

which in turn depend on how many loans and deposits they have taken. Similarly, in

Central Bank’s auctions, the demand of liquidity depends on the amount and quality of

the banks’ collateral.16

Our model has being built to understand the future performance of electricity markets,

and so it captures some of their key characteristics. Notably, similarly to most electricity

markets in practice, the model assumes that firms compete by submitting a finite number

of price-quantity pairs to an auctioneer, who then allocates output and sets market prices

according to such bids.17 We have assumed that demand is price-inelastic and known by

the time firms submit their bids. This is justified on two grounds. First, electricity

retail prices typically do not reflect movements in spot market prices, and even where

they do, consumers typically do not have strong incentives or the necessary information to

optimally respond to hourly price changes.18 Second, System Operators regularly publish

very precise demand forecasts before the market opens. Extending the model to allow

for some degree of demand elasticity and/or demand uncertainty would add a layer of

16Similar examples can be found in markets which are not organized as formal auctions: how much
oil an oil producer is willing to sell depends on the remaining oil in the well; how many available cars
a ride-hailing company has depends on how many drivers are on service, net of those who are already
occupied; how many rooms a hotel is willing to offer online depends on how many rooms have been
booked through other channels; how much cloud computing space a firm is willing to offer depends on
how much excess capacity it has above its own data needs; or how much olive oil a firm is willing to sell
depends on whether its harvest was good or bad.

17While in practice firms are allowed to submit more than one step in their bidding functions, because
of tractability reasons we restrict them to submitting just one. The same applies to other papers in the
electricity auctions literature (Holmberg and Wolak, 2018; Fabra et al., 2006). Analyzing the model with
multiple steps is beyond the scope of this paper.

18The empirical evidence shows that this is the case in the Spanish electricity market, the only country
so far where Real Time Pricing has been implemented as the default option for all households (Fabra
et al., 2019). This might change once automation devices become more broadly deployed.
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complexity without significantly affecting its main predictions.

Regarding supply, we have not allowed for a meaningful coexistence between renew-

ables and conventional technologies because our aim is to shed light on the performance

of electricity markets during the late stages of the energy transition, when conventional

technologies will mainly serve as back-up. Still, one could interpret that conventional

technologies are implicitly present in the model through P , as it plays the same role as

the marginal costs of coal or gas plants (as long as they these conventional plants are

not owned by the renewable producers). Alternatively, and consistent with most real

electricity markets, P can be interpreted as a explicit price cap or an implicit one that

triggers regulatory intervention. We have assumed that P is known, but the model could

be extended to allow it to be stochastic.

Importantly, one of the core assumptions of our analysis is that firms possess private

information that allows them to perfectly forecast their available capacities. In practice,

as captured by our model, the availability of renewable resources is subject to common

and idiosyncratic shocks. Firms’ available capacities are thus correlated through the com-

mon shock component, albeit imperfectly so due to the presence of idiosyncratic shocks.

While System Operators typically publish forecasts of the common shock at the national

or regional level, the idiosyncratic component remains each firm’s private information.

Indeed, through the monitoring stations installed at the renewable plants’ sites, firms

have access to local weather measurements that are not available to the competitors. Be-

yond weather conditions, the plants’ availability might be subject to random outages and

maintenance schedules that only their owners are aware of. Accordingly, in the presence

of private information, each firm is better informed about its own available capacity than

its competitors. Our model applies even in those settings in which the amount of private

information is relatively small.

To illustrate this claim empirically, we have collected data from the Spanish electricity

market to perform and compare forecasts of each plant’s production, with and without

firms’ private information. In particular, we have obtained proprietary data of six renew-

able plants corresponding to their hourly production and their own available capacity

predictions at the time of bidding, for a two-year period. We have also gathered the ca-

pacity predictions computed by the Spanish System Operator (Red Eléctrica de España)

and the one-day ahead predictions of the Spanish weather agency (Agencia Estatal de

10



(1) (2)
Variables

Public forecast 0.582*** 0.070***
(0.035) (0.021)

Private forecast 0.657***
(0.008)

Observations 36,671 36,671
R-squared 0.520 0.826
Mean of the error 0 0
Standard deviation of the error .18 .11

Table 1: Forecast errors with public versus private information.

Note: The dependent variable is the plant’s hourly production normalized by its nameplate capacity.
Both regressions include weather data (temperature, wind speed and atmospheric pressure) as well as
plant, hour and date fixed effects. The robust standard errors are in parentheses *** p<0.01, ** p<0.05,
* p<0.1. One can see that using the plant’s own forecast significantly reduces the forecast error, with
the R2 increasing from 0.520 to 0.826. When the private forecast is used, the public forecast is still
statistically significant but it has a small impact in the prediction.

Meteoroloǵıa or AEMET) at provincial level, which is the most disaggregated local level

available, close to the plant’s location. We have used OLS to forecast each plants’ hourly

availability, with and without the firms’ proprietary local data. Figure 1 plots the distri-

bution of the forecast errors and Table 1 summarizes the mean and standard deviations

of the corresponding forecast errors. The evidence suggests that firms possess private

information that allows them to significantly improve the precision of the forecasts of

their own plants’ available capacities.19 Interestingly, when the private forecast is used,

the national forecast, while still statistically significant, has a small economic impact in

the prediction.

As shown by these results, firms’ forecast errors are centered around zero, but the

standard deviations remain significant even when firms have private information about

their own capacities. Nevertheless, the day-ahead market price and output allocation

are computed using firms’ committed quantities, even when these differ from their actual

ones. Hence, for bidding purposes, what matters is that each firm knows exactly how

much output it has offered in the day-ahead market, and not necessarily how much it will

be able to produce in real time. This explains why our model assumes that firms know

exactly their available capacity before submitting their bids.

19We have also used more general specifications, such as a LASSO, with almost identical results.
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Figure 1: Kernel distribution of the forecasts errors using public (solid) or private
information (dashed).

Note: This figure depicts the densities of the forecast errors of the specifications in Table 1. Both
distributions are centered around zero, but the standard deviation is larger when only publicly available
data are used.

The day-ahead market, which concentrates the vast majority of trade, is typically

followed by a series of balancing markets that operate closer to real time. In general,

participation in these markets leads to less favorable prices, and this means that (ab-

sent strategic considerations) firms try to avoid imbalances (Hortaçsu and Puller, 2008)

by offering in the day-ahead market their best capacity estimate. Adding the poten-

tial dynamic effects introduced by these sequential markets is beyond the scope of this

analysis.20

3 Equilibrium Characterization

In this section we characterize the Bayesian Nash Equilibria (BNE) of the game in

which capacities are private information. When k ≥ θ the characterization of the equi-

librium is trivial. Since either firm can cover total demand regardless of their realized

capacities, Bertrand forces drive equilibrium prices down to marginal costs. For this rea-

son, in the remainder of the paper we turn attention to the remaining cases. It is useful

to start by assuming that k ≤ θ (small installed capacities). In this case, a firm’s capacity

can never exceed total demand, implying that the low bid is always payoff irrelevant. We

later analyze the case in which k > θ (large installed capacities).

20See Ito and Reguant (2016) for an empirical analysis.
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3.1 Small Installed Capacities

We first consider the case of small installed capacities, defined as situations in which

each firm’s capacity never exceeds total demand, i.e., k ≤ θ. Our first lemma identifies

three key properties that any equilibrium must satisfy in this case.

Lemma 1. If k ≤ θ,

(i) Capacity withholding is never optimal, q∗i (ki) = ki.

(ii) All Bayesian Nash Equilibria must be in pure strategies.

(iii) The optimal price offer of firm i, b∗i (ki), must be non-increasing in ki.

The first part of the lemma rules out capacity withholding in equilibrium.21 The

reason is that profits are strictly increasing in qi: conditionally on having the low bid,

the firm maximizes its output by offering to sell at capacity and, conditionally on having

the high bid, its profits do not depend on its quantity offer as the firm always serves the

residual demand.

The second part of the lemma rules out non-degenerate mixed-strategy equilibria. The

underlying reason is simple: a firm’s profits at a mixed-strategy equilibrium depend on

its realized capacity, which is non-observable by the rival. If the competitor randomizes

in a way that makes the firm indifferent between two bids for a given capacity realization,

the same randomization cannot make the firm indifferent for other capacity realizations

as well. It follows that the equilibria must involve pure strategies.

The last part of the above lemma rules out bids that are increasing in the firm’s

capacity. When a firm considers whether to reduce its bid marginally, two effects are at

play for a given bid of the rival: a profit gain due to the output increase (quantity effect),

and a profit loss due to the reduction in the market price (price effect). On the one hand,

the quantity effect is increasing in the firm’s capacity, as if it bids below the rival, it sells

at capacity rather than just the residual demand. On the other hand, the price effect is

independent of the firm’s capacity as, contingent on bidding higher than the rival, the

firm always sells the residual demand. Combining these two effects, the incentives to bid

21In case of indifference between withholding or not, we assume without loss of generality that the
firm chooses not to withhold.
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low are (weakly) increasing in the firm’s capacity, giving rise to optimal bids that are

non-increasing in ki.
22

Building on this lemma, we now turn to the characterization of the Bayesian Nash

equilibria. For completeness, we describe both the asymmetric as well as the symmetric

pure-strategy Bayesian Nash equilibrium of the game. We start with the former.

Proposition 1. If k ≤ θ, there exist asymmetric Bayesian Nash equilibria in pure-

strategies, in all of which p∗ = P . This market price is sustained by the following price-

quantity pairs: b∗i (ki) = P and q∗i (ki) = ki, while b∗j(kj) ≥ b > c and q∗j (kj) = kj, for

i, j = 1, 2 and j 6= i, with b low enough so as to make undercutting by firm i unprofitable.

When firms’ capacities never exceed total demand, there exist asymmetric equilibria

in which one firm bids sufficiently low so as to discourage its rival from undercutting it.

This firm is then forced to maximize its profits over the residual demand by bidding at

the highest possible price, P .23 The low bidder makes higher expected profits than the

high bidder, as it sells at capacity rather than the residual demand. Therefore, firms are

bound to face a coordination problem unless they can resort to an external correlation

device. This might preclude them from playing the asymmetric equilibria, even if these

equilibria allow firms to maximize joint profits.

We now focus on the characterization of the symmetric equilibrium. Following Lemma

1 part (iii), we already know that price offers must be non-increasing in capacity. In this

case, however, and in contrast with the asymmetric equilibria characterized above, the

optimal price offer at a symmetric equilibrium must be strictly decreasing in ki. This

result follows from standard Bertrand arguments: equilibrium bidding functions cannot

contain flat regions, as firms would otherwise have incentives to slightly undercut those

prices and expand the quantity sold with a strictly positive probability. This property

allows us to write the expected profits of firm i using the inverse of the bid function of

22The incentives to bid low are strictly increasing in the firm’s capacity if marginally reducing the
bid implies a strictly positive probability of increasing the firm’s output, i.e., a strictly positive quantity
effect. This need not be the case if the equilibrium is asymmetric, as we show below.

23If P were stochastic (either because it is interpreted as the marginal costs of the conventional
producers or because it is the implicit price-cap that triggers regulatory intervention) the equilibrium
market price would maximize the high bidder’s profits, taking into account the distribution of P . Since
the high bidder sells the expected residual demand, such a price is independent of the firm’s realized
capacity.
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firm j, bj(kj), as follows

πi(bi, bj(kj)) =

∫ b−1
j (bi)

k

(bj(kj)− c)kig(kj)dkj +

∫ k

b−1
j (bi)

(bi − c)(θ − kj)g(kj)dkj.

When kj < b−1
j (bi), firm i has the low bid and sells up to capacity at the price set by firm

j. Otherwise, firm i serves the residual demand and sets the market price at bi.

Maximizing profits with respect to bi and applying symmetry, we can characterize the

optimal bid at a symmetric equilibrium.

Proposition 2. If k ≤ θ, at the unique symmetric Bayesian Nash equilibrium, each firm

i = 1, 2 offers all its capacity, q∗(ki) = ki, at a price given by

b∗(ki) = c+ (P − c) exp (−ω(ki)) , (1)

where

ω(ki) =

∫ ki

k

(2k − θ)g(k)∫ k
k

(θ − kj)g(kj)dkj
dk.

Equation (1) characterizes the optimal price offer for all capacity realizations. As

anticipated, the optimal price offer adds a markup above marginal cost that is strictly

decreasing in ki. In order to provide some intuition, it is useful to implicitly re-write it

as follows

− b′∗(ki)

b∗(ki)− c
= ω′(ki) =

(2ki − θ)g(ki)∫ k
ki

(θ − kj)g(kj)dkj
. (2)

This equation describes the incentives to marginally reduce the bid, which, in turn,

reflect the trade-off between the quantity effect and the price effect, as captured by the

ratio on the right-hand side of the above equation.

The price effect (on the denominator), or price loss from marginally reducing the

bid, is relevant only when the firm is setting the market price, i.e., when the rival firm’s

capacity is above ki. In this case, reducing the bid implies that the firm keeps on selling

the expected residual demand,
∫ k
ki

(θ − kj)g(kj)dkj, but at a lower market price. The

quantity effect (on the numerator), or output gain from marginally reducing the firm’s

bid, is relevant only when the two firms tie in prices, i.e., when both firms have the same

capacity ki, an event that occurs with probability g(ki). In this case, reducing the bid

implies that the firm sells all its capacity rather than just the residual demand, i.e. its

output jumps up by ki − (θ − ki) = 2ki − θ.
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Figure 2: Equilibrium price offer

Note: This figure depicts the equilibrium price offer as a function of ki when ki ∼ U [0.5, 0.9], with θ = 1,
c = 0, and P = 0.5. One can see that it starts at P for ki = k, and that it decreases in ki until it takes
the value c = 0 at ki = k = 0.9.

The ratio of these two effects shape the form of the bidding function as described in

the left-hand side of equation (2). A bigger quantity effect increases a firm’s incentives

to undercut the rival, meaning that in order to sustain this symmetric equilibrium the

bidding function must become steeper — to require a larger bid reduction — and the

mark-up must become smaller — to make undercutting less profitable. A decrease in the

price effect, to the extent that it makes price increases less relevant has a similar effect.

The optimal bid starts at P for the lowest possible capacity realization and ends at c

for the largest one. When ki = k, firm j is bigger by construction, so firm i sets the market

price with probability one. A price offer below P could never be part of an equilibrium

as firm i could sell the same output at a higher price by bidding at P . When ki = k,

firm j is smaller by construction, so firm i never sets the market price. Hence, the firm’s

bid has no impact on the price and only the quantity effect matters. Therefore, a price

offer above c could never be part of an equilibrium as firm i could expect to sell more

output at the same price by bidding at c. Figure 4 depicts the equilibrium price offer as

a function of ki.

Finally, given equilibrium bidding, each firm’s expected profits are equal to the min-

imax when ki = k, and they are strictly higher otherwise. The reason is simple: a firm

can always pretend to be smaller by withholding output and replicating the smaller firm’s

bid. The fact that firms prefer to offer all their capacity means that larger firms make
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higher equilibrium profits than the smallest one, whose profits exactly coincide with the

minimax. As a result, expected equilibrium market prices are higher than when firms

just obtain their minimax.24

3.2 Large Installed Capacities

We now analyze the case of large installed capacities in which a single firm’s capacity

might exceed total demand, k > θ. In contrast with the case of small installed capacities,

capacity withholding is now optimal for firms whose capacity exceeds total demand,

ki > θ. Indeed, offering to supply ki is weakly dominated by offering to supply θ: in any

event, the firm will never produce more than θ and, conditioning on having the low price,

offering θ instead of ki increases the chances that the rival’s higher price offer will set the

market price.25 For capacity realizations ki ≤ θ, equilibrium bidding is just as in the case

with small installed capacities.

Proposition 3. If k > θ, in equilibrium, b∗i (ki) = c and q∗i (ki) = θ for all ki > θ, i = 1, 2.

For ki ≤ θ, Propositions 1 and 2 apply with G(ki) now adjusted to G(q∗i (ki)), i = 1, 2.

Essentially, in our model, capacity realizations determine endogenously whether firms

compete à la Cournot - with firms withholding capacity - or à la Bertrand - with firms

offering all their capacity at prices above marginal costs.

3.3 Implications for Market Performance

Combining Sections 3.1 and 3.2, we can now shed light on two issues: (i) how do

prices change when demand goes up, relative to existing capacities?, and (ii) how will

prices change as total investment increases?

Regarding the first issue, equilibrium price offers shift out as demand increases since

the quantity effect becomes less important, i.e., the quantity loss of being outbid is lower

since the residual demand is bigger. Consequently, equilibrium prices go up when demand

increases relative to existing capacities. In practice, this implies that, even controlling

for available capacities, the response of mark-ups to demand movements add another

24This insight will be useful in Section 4, where we compare equilibrium prices when capacities are
private information or unknown to both firms.

25If instead of setting the market price at the lowest non-accepted bid, we set it equal to the highest
accepted bid, firm i would optimally offer to produce a quantity slightly below total demand, θ, giving
rise to the same market price and (almost) the same quantity allocation.
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source of market price volatility. If demand shocks are positively (negatively) correlated

with capacity shocks, price volatility will be softened (amplified). To the extent that the

available capacities of the various production technologies have different correlation with

demand, their impact on market power and the price patterns will differ.

Regarding the second issue, an increase in installed capacity κ implies a parallel

increase in the capacity bounds k = βκ + ε and k = βκ + ε. As this increases the

probability that capacity exceeds θ, firms are more likely to bid at c. In turn, this implies

that the expected market price smoothly converges towards marginal costs. Eventually, as

k reaches θ, the market becomes competitive at all times as the equilibrium bid function

puts almost all the mass at marginal cost.

This is illustrated in Figure 3. As can be seen in the upper panel, increases in κ shift

firms i’s equilibrium price offers to the right. This is driven by a stronger price effect, as

for a given realization of ki, the rival’s capacity is expected to be larger and hence firm

i is more likely to set the market price. However, this is more than compensated by the

effects of having more installed capacity: since higher capacity realizations become more

likely, equilibrium market prices decrease, as illustrated in the lower panel of the Figure.

4 What is the impact of private information?

In this section we aim to understand the effect of private information on bidding be-

havior and market outcomes. For this purpose, we first characterize equilibrium outcomes

under two benchmarks with no private information, either because capacities are publicly

known or because they are unknown to both firms prior to bidding. For simplicity, we

compare outcomes at the symmetric equilibria.26

First, suppose that firms observe realized capacities prior to submitting their bids.

Accordingly, firms’ bids can be conditioned on realized capacities. The following lemma

characterizes the level of profits that can be sustained by symmetric equilibria, either in

pure or in mixed strategies.

Lemma 2. Suppose that realized capacities are publicly known prior to bidding:

(i) If ki < kj, there exist symmetric Nash pure-strategy equilibria, resulting in joint

profits (P−c)θ. There also exist symmetric Nash mixed-strategy equilibria, resulting

26Comparing the asymmetric equilibria would be uninteresting as the asymmetric equilibria charac-
terized in Proposition 1 can be sustained under all three informational assumptions.
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Figure 3: Equilibrium price offers and expected market price as installed capacity in-
creases

Note: The upper panel shows that the equilibrium price offers shift outwards as κ, and consequently, k
increases. The lower panel shows that the expected market price smoothly goes down as a function of
k, which together with k, shift out as κ increases. The figures assume θ = 1, c = 0, and P = 0.5, and
ki ∼ U [k, k + 0.2], for k ∈ [0.5, 0.95].

in expected joint profits bounded from above by (P − c)θ and from below by (P −

c)(2θ − ki − kj).

(ii) If ki = kj = k, the unique symmetric Nash equilibrium is in mixed-strategies. It

yields expected joint profits 2(P − c)(θ − k).

The game with known capacities allows firms to sustain equilibria in which all their

output is sold at P . Just as we described in Section 3, these equilibria are characterized

by asymmetric bidding, with one firm bidding at P while the rival bids low enough so as

to make undercutting unprofitable. The main difference between this game and the one in

which capacities are private information is that firms can use realized capacities (if they

are asymmetric) to overcome their coordination problem. For instance, they can now

share profits symmetrically by designating the small firm to bid low and the large firm
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to bid high.27 Therefore, when realized capacities are publicly known (and asymmetric),

there exist symmetric equilibria that allow firms to obtain maximum profits.

The game with publicly known (and asymmetric) capacities also gives rise to a con-

tinuum of mixed-strategy equilibria, with firms randomizing their bids between P and c.

In one of the extremes, equilibrium profits are lowest when firms do not condition their

bidding on realized capacities. In this case, the mixed strategy equilibrium involves no

firm playing a mass point at P . In the other extreme, equilibrium profits are the highest

when one of the firms plays P with probability almost equal to one, thus converging

to the pure-strategy equilibrium characterized above. In turn, this shows that all the

mixed-strategy equilibria are Pareto-dominated by the pure-strategy equilibrium.

Consider now the case in which firms do not observe realized capacities prior to

bidding. For this reason, we need to change the game slightly by assuming that firms’

bids are just made of the price at which they are willing to offer all their capacity, once it

is realized.28 The following lemma shows that the unique symmetric equilibrium involves

mixed-strategy pricing.

Lemma 3. If realized capacities (ki, kj) are not known prior to bidding, the unique sym-

metric Bayesian Nash equilibrium involves mixed strategies, with firms randomizing their

bids in the interval (c, P ). Expected equilibrium joint profits are 2(P − c)(θ − E[k]).

Since bids cannot be conditioned on capacities, in a symmetric equilibrium, both firms

would have to either charge equal prices or use the same mixed strategy to randomize

their prices. Since the former is ruled out by standard Bertrand arguments, the only

symmetric equilibrium involves mixed strategies. Since at P the rival firm is bidding

below with probability one, and since all the prices in the equilibrium support yield equal

expected profits, it follows that at the unique symmetric equilibrium each firm makes

expected profits equal to (P − c)(θ − E[k]).

We are now ready to rank expected prices at the symmetric equilibria across all three

information treatments.

Proposition 4. The comparison of the symmetric Bayesian Nash equilibria in the games

in which capacities are unknown, private information, or publicly known, shows that:

27The only exception is when firms’ realized capacities are equal. If firms can condition on an ex-
ternal correlation device, they can still share profits symmetrically. Otherwise, the unique symmetric
equilibrium involves mixed-strategy pricing, with firms making (weakly) lower expected profits.

28In any event, firms would not find it optimal to withhold output below their expected capacity.
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(i) The lowest expected prices are obtained with unknown capacities.

(ii) The highest expected prices are obtained with publicly known capacities.

The proposition above shows that the more information firms have, the higher the

expected prices they can obtain at a symmetric equilibrium. When capacities are private

information, the fact that bidding incentives differ across firms allows them to avoid fierce

competition, but not as much as if both capacities were known: large (small) firms find

it in their own interest to bid low (high), but not as low (high) as if they knew with

certainty that the rival firm was bidding higher (lower). When capacities are unknown

to both firms, firms face fully symmetric incentives and they end up competing fiercely.

As a result, private information leads to higher prices than in the case with unknown

capacities, but lower than when capacities are publicly known. This result suggests that

firms would be better off if they could exchange their private information regarding their

available capacities. For the same reason, in the context of electricity markets, system

operators should avoid publishing individual firm information even if, in practice, they

collected it to construct an aggregate forecast.

The above results serve to shed some light on the relationship between the precision

of information and equilibrium bidding. In our model, when firms get a very precise

signal about the rival’s capacity, equilibrium profits converge to those with symmetric

and known capacities, for which the symmetric equilibrium involves mixed strategies that

give rise to very low profits (i.e., reaching the minimax).

However, this result is misleading as it only applies to instances when firms are ex-

post symmetric, an event that occurs with zero probability. More generally, the model

developed so far does not allow to disentangle the effects of improved information pre-

cision from those of increased symmetry: as the precision of the signal increases, not

only firms become better informed about the rival’s capacity but also their capacities are

more likely to become ex-post symmetric. Since increased symmetry leads to more com-

petitive outcomes, this latter effect confounds the true impact of information on bidding

behavior.29

29This question has already been addressed in other contexts. Spulber (1995) showed that introducing
asymmetric information on firms’ costs in the standard price competition model leads to higher prices.
However, the opposite conclusion is reached when comparing a game with private information on costs
versus one in which costs are known but they are stochastic, using the same distribution (Hansen, 1988).30

That is, private information on costs mitigates market power, in line with our model’s predictions
regarding the impact of private information on capacities.
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Accordingly, in order to understand the effects of information precision in our model,

we need to work with ex-ante asymmetric capacities. While we perform a formal analysis

of this case in Section 5.1, some of its conclusions are pertinent for this discussion. Sup-

pose that ki is uniformly distributed in [ki, ki], with k1 < k2, i.e., firm 1 is always smaller

than firm 2. In this case, there cannot exist equilibria similar to those in Proposition 2 as

there is no uncertainty on which firm has the small capacity and hence the high bid. As

a consequence, the only pure-strategy Bayesian Nash equilibria are those in Proposition

1, with p∗ = P . In words, the introduction of a small amount of uncertainty around

asymmetric capacities has no impact on bidding behavior or market outcomes. However,

adding more uncertainty so that firms’ capacity intervals overlap, k1 > k2, gives rise to

equilibria in which firms’ bids are a function of realized capacities (along the lines of

Proposition 2). As in Proposition 4, the expected market price starts falling below P

as the forecasts about the rival’s capacity become more noisy. In sum, the less precise

the signal about the rival’s capacity, the weaker is their market power, in line with our

previous conclusions regarding the impact of private information.

5 Extensions and Variations

In this section we consider extensions and variations of the baseline model. First, we

entertain changes in the market structure: we introduce asymmetries across firms and we

allow for more than two symmetric firms. Second, we consider a change in the market

design: we analyze the effects of banning capacity withholding.

5.1 Asymmetric Firms

We now discuss the case in which firms have ex-ante different capacities. In particular,

firm i has capacity ki = βκi + εi with κ1 > κ2. For simplicity, we assume that errors

are uniformly distributed in a common interval [ε, ε], so that the capacity of firm i is

uniformly distributed between ki = βκi + ε and ki = βκi + ε for i = 1, 2. As in Section

3, we assume that firms’ aggregate capacity is always enough to cover total demand,

k1 + k2 ≥ θ.

We start with the case in which the two firms’ installed capacities are small, k1 ≤ θ.

Proposition 5. Assume that ki is uniformly distributed in [ki, ki]. If k1 ≤ θ, in equilib-

rium each firm offers all its capacity, q∗i (ki) = ki for i = 1, 2. Furthermore:
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(i) The asymmetric pure strategy Bayesian Nash equilibria characterized in Proposition

1 continue to exist.

(ii) Moreover, if k2 ≥ k1, there also exists an equilibrium in which price offers are

characterized as

b∗i (ki) =


P if k2 ≤ ki ≤ k1,

b∗(ki) if k1 < ki < k2,

c if k1 ≤ ki ≤ k1,

where

b∗(ki) = c+ (P − c) exp (−ω(ki)) , (3)

and

ω(ki) =

∫ ki

k1

(2k − θ)∫ k2
k

(θ − kj)dkj
dk.

Interestingly, this proposition shows that ex-ante capacity asymmetries move equilib-

rium bidding behavior from Proposition 1 to Proposition 2. When the capacity intervals

do not overlap, k2 < k1, the equilibria are identical to the ones characterized in Proposi-

tion 1, with one firm setting the market price at P and the other one choosing a sufficiently

low bid. There cannot exist a symmetric equilibrium like the one in Proposition 2, as it

relies on firms being uncertain about the identity of the large firm and, therefore, about

the identity of the low bidder.

In contrast, when the capacity intervals overlap, this uncertainty reemerges for capac-

ities in the range [k1, k2]. Over this interval, the equilibrium price offers resemble those

in Proposition 2, with firms pricing at P for ki = k1 and at c for ki = k2. For smaller

capacity realizations, firm 2 bids at P . For higher capacity realizations, firm 1 bids at c.

As a result, both price offers are continuous in the realized capacities. Figure 4 illustrates

these bids.

These equilibria survive in the large installed capacities case when capacity withhold-

ing becomes optimal, as stated next.

Corollary 1. If k1 > θ, in equilibrium each firm offers q∗i (ki) = min{θ, ki} and prices

according to Proposition 5, where the relevant threshold in part (ii) of Proposition, k2, is

replaced by min{θ, k2}.

For the same reasons explained in the ex-ante symmetric capacities case, firms always

find it optimal to withhold capacity whenever their realized capacity exceeds θ. As a
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Figure 4: Equilibrium price offers when firms are ex-ante asymmetric

Note: This figure depicts the equilibrium price offers as a function of ki when k1 ∼ U [0.6, 0.9] and
k2 ∼ U [0.5, 0.8], θ = 1, c = 0, and P = 0.5. One can see that the equilibrium is symmetric only in the
area of capacity overlap, [0.6, 0.8]. For larger capacities [0.8, 0.9], the large firm bids at c (upper panel),
whereas for smaller capacities [0.5, 0.6], the small firm bids at P (lower panel).

result, firms behave in equilibrium as if their capacities were capped with a mass point

at θ.

This equilibrium characterization allows us to conclude that, keeping aggregate in-

stalled capacity as given, an increase in firms’ asymmetry results in higher expected

prices. As firm 2 becomes smaller in expected terms, it bids at P with a higher probabil-

ity, raising the expected equilibrium price. In the limit, when asymmetries are such that

there is no capacity overlap, k1 > k2, the market price is P with probability 1.

It is important to notice, however, that the characterization of this equilibrium hinges

on the density of each firm being identical in the range of capacity overlap, thanks to the

assumption of uniformly and identically distributed idiosyncratic shocks. This guarantees

that the two first order conditions that characterize optimal bidding are identical, allowing

us to conclude that the equilibrium price offers are symmetric. While we do not provide
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a characterization for generic distribution functions, we conjecture that the nature of the

equilibrium would remain similar but explicit solutions would be unlikely to come by.

5.2 N Firms

We now extend our equilibrium analysis to accommodate an arbitrary number of

symmetric firms, N ≥ 2. As in Section 3, we assume that firms always have enough

aggregate capacity to cover total demand, Nk ≥ θ. For simplicity, we focus our discussion

on the case of small installed capacities and assume that all firms are always necessary to

cover demand. As a result, all firms but the one with the highest bid will sell at capacity.

From the point of view of firm i, this means that the N -firm problem can be reinterpreted

as if each firm was only facing one competitor, the smallest one.

We introduce some additional notation. Let k−i be the minimum capacity among those

of firm i’s rivals, i.e., k−i = minj 6=i kj. As usual, its cumulative distribution function and

density are

Φ (k−i) = 1− (1−G (k−i))
N−1 ,

ϕ (k−i) = (N − 1) g (k−i) (1−G (k−i))
N−2 .

The following result characterizes the equilibrium behavior in this case.

Proposition 6. When (N−1)k ≤ θ, at the unique symmetric Bayesian Nash equilibrium,

each firm i = 1, .., N offers all its capacity, q∗(ki) = ki, at a price given by

b∗(ki) = c+ (P − c) exp (−ω (ki)) ,

where

ω (ki) =

∫ ki

k

(
2k +

∫ k
k

(N − 2) kg(k)dk − θ
)
ϕ(k)∫ k

k

(
θ − kj −

∫ k
kj

(N − 2) kg(k)dk
)
ϕ(kj)dkj

dk.

As compared to the solution in the duopoly case, N enhances the quantity effect

because the loss in production from marginally increasing the bid is higher the more

competitors there are in the market. At the same time, the price effect is reduced because

the firm only benefits from increasing the bid through the residual demand, which is now

smaller. Both effects imply that the optimal price offer goes down with N and so does

the equilibrium price.31

31The characterization of the equilibria in cases with (N − 1)k > θ is more cumbersome and yet it
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The previous analysis is relevant to study the effects of entry, as an increase in the

number of firms brings in additional capacity. However, studying the effects of mergers

or divestitures requires keeping total capacity fixed. Otherwise, the effects of changing

the number of firms would be confounded with those of changing the amount of installed

capacity.

Accordingly, consider now a situation whereN single-plant firms merge intoN/2 firms,

each one owning two plants. Since total capacity remains the same, the difference between

these two cases is solely due to the plants’ ownership structure. Two effects arise. On the

one hand, there is a size effect. As mergers make firms bigger, they tend to behave less

competitively. On the other hand, there is a capacity-distribution effect. Mergers change

the distribution of capacity across firms, thus affecting their bidding incentives. After the

merger, each firm bids according to the sum of its two plants’ realized capacities whereas

before the merger, each firm bids according to its single plant’s realized capacity. Since

firms care about the bid of their relevant competitor, after the merger each firm cares

about the sum of its rival’s plants’ realized capacities, while before the merger each firm

cares about the smallest plant’s realized capacity. The distribution of the sum tends to

put more weight on intermediate capacity values as smaller realizations of one plant are

compensated with larger realizations of another. As a consequence, this effect induces

the merged multi-plant firms to behave more aggressively as they expect their rival to

submit lower bids with higher probability.

Figure 5 provides an illustration of how the previous two forces shape the equilibrium

with N = 2 as compared to N = 4. Suppose there are four plants. The capacity of

each plant is uniformly distributed between [0.25, 0.5]. Since total demand is equal to 1,

the production of all four plants is necessary to cover demand. When N = 2 and each

firm owns two plants, firms care about the rival’s total realized capacity, which follows

a triangular distribution in [0.5, 1]. When N = 4 and each firm owns a single plant,

firms’ relevant competitor is the one with the smallest realized capacity, given that it

will submit the highest bid. The equilibrium price offer in the case N = 2 when a firm’s

realized capacity is k is represented in Figure 5 by a solid line. To make the case N = 4

comparable with the case N = 2, we also compute the highest bid in the case N = 4

provides similar insights. When firms might have larger capacities the quantity that each one sells not
only depends on whether it is the smallest firm and, therefore, it sells the residual demand, but it could
also occur when the firm has the second smallest capacity, the third smallest, and so on. Mathematically,
this requires the usage of higher order statistics and not only the first one.
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Figure 5: Equilibrium effective bids for N = 2 and N = 4.

Note: Each plant’s capacity is uniformly distributed, ki ∼ U [0.25, 0.5]. For the case N = 2, the solid
line depicts the equilibrium bid of a firm whose two plants’ capacities sum k. For the case N = 4, the
dashed line depicts the maximum equilibrium bid across two firms whose plants’ capacities sum k. Since
there are several combinations of the two plants’ capacities summing k, the dashed line represents the
average across all such combinations. The remaining parameters are c = 0, P = 0.5 and θ = 1.

when the capacity of two firms sums k.32 As there are several combinations of firms’

capacities summing k, the figure represents with dots the average highest bid for each k.

As the figure shows, the merger translates into higher bids only when realized capacity

is low (as the size effect dominates), whereas the reverse is true when realized capacity

is high (as the capacity distribution effect dominates). However, the equilibrium market

price is higher in the N = 2 case, thus suggesting that, in expected terms, the size effect

tends to dominate over the capacity distribution effect.

5.3 Capacity Withholding is not Allowed

In Section 3.2 we showed that the symmetric equilibrium involves capacity withhold-

ing whenever ki > θ. However, in some countries, wind producers are banned from

withholding output, or equivalently for our current purposes, market rules are such that

firms are discouraged from withholding.33 What would equilibrium bidding behavior look

like in this case? Does a ban on capacity withholding benefit consumers? To address

32Formally, this expression can be computed as

b̂(k) =

∫ k

k

max[b(ki), b(k − ki)]g(ki)g(k − ki)dki.

.
33For the German case, see May (2017).
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these questions, we now characterize equilibrium bidding when capacity withholding is

not possible and compare it with the one reported in Proposition 2.

The constraint qi = ki is clearly not binding in the case of small installed capacities,

k ≤ θ, as firms never find it optimal to withhold capacity even if allowed (Lemma 1).

In contrast, banning capacity withholding in cases with k > θ has a dramatic impact on

bidding incentives. First, conditionally on having the high bid, a firm produces nothing

if its rival’s capacity is at or above θ. Second, the bid of a firm whose capacity exceeds θ

is payoff relevant even if it is the low one, as in this case the firm serves total demand at

its own bid. The former effect intensifies competition, whereas the second induces firms

to charge higher prices.

To describe the equilibrium when capacity withholding is not allowed, we split the

characterization in two cases, depending on whether the firm’s realized capacity is above

or below θ.

Lemma 4. Assume k > θ. When capacity withholding is not allowed, there does not

exist a Bayesian Nash Equilibrium in pure strategies.

If ki > θ, firm i is never capacity constrained. Since its expected profits do not

depend on its realized capacity, its optimal bid at a candidate pure-strategy equilibrium

is the same for all capacity realizations above θ. However, this would give rise to ties

with positive probability, which is ruled out by standard Bertrand arguments. More

specifically, ties cannot be part of an equilibrium as firms would be better off by slightly

undercutting any price above marginal cost in order to sell more output with only (if

any) a slight reduction in the price. Furthermore, tying at marginal cost is also ruled out

as firms could make positive profits by selling the expected residual demand at P . Thus,

at a symmetric equilibrium, firms must randomize their bids for all capacity realizations

above θ.

The previous argument implies, of course, that the symmetric Bayesian Nash Equi-

librium of the game must be in mixed strategies, as at least for ki > θ firms randomize

their bids. The next proposition describes the optimal bid.

Proposition 7. Assume k > θ. In the unique symmetric Bayesian Nash Equilibrium

without capacity withholding, the optimal price offer for firm i is

(i) For ki ∈
[
k, k̂
]

and ki ∈
[
k̃, θ
]
, the optimal price offer is b∗(ki), as defined in (1)
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Figure 6: Equilibrium price offers when capacity withholding is not allowed.

Note: The figure depicts the equilibrium price offer. The equilibrium involves a pure-strategy for ca-
pacities below θ and a mixed strategy for capacities above θ (the price density is depicted on the right).
Parameter values ki ∼ U [0.5, 1.1], with θ = 1, c = 0, and P = 0.5.

with k replaced by θ.

(ii) For ki ∈
(
k̂, k̃
)

, the optimal price offer is b̂(ki), which is strictly decreasing in ki

and strictly lower than b∗(ki) as defined in (1) with k replaced by θ.

(iii) For ki > θ, firm i randomizes its price offer in a support
[
b, b̄
]

independently of ki,

where b > c and b̄ < P. bi ∼ F (bi) with density f(bi) in a support [b, b̄].

The thresholds k̂ and k̃ are implicitly defined as b∗(k̂) = b̄ and b∗(k̃) = b, where b and b̄

are defined in Lemma 4.

One distinctive feature of this equilibrium is that, for those capacity realizations for

which the equilibrium involves mixing, the upper bound of the price support does not

go all the way up to P . The reason is that when firms have capacity ki > θ, they face

a downward sloping residual demand, induced by the downward sloping bid function of

the rival when its capacity realization is below θ.

As it can be observed in the example illustrated in Figure 6 the optimal bid when

ki belongs to either
[
k, k̂
]

or
[
k̃, θ
]

is similar to the one when capacity withholding is
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allowed. The sole difference is that, from firm i’s point of view, firm j’s relevant capacities

now range from k to θ given that firm i’s profits are constant when kj > θ. In particular,

for such capacities, firm j randomizes its bid in the support (b, b̄) and, thus, price offers

are bounded from above by b∗(k̂) = b̄ and from below by b∗(k̃) = b. Hence, if kj > θ,

firm i does not produce anything if ki belongs to
[
k, k̂
]
, while firm i sells at capacity at

the price set by firm j if ki belongs to
[
k̃, θ
]
. It follows that whenever kj > θ, firm i’s

bidding incentives are equal to those in Proposition 2 with k = θ.

This result is in contrast to the case with ki ∈
[
k̂, k̃
)

. For these realizations, firm i

might have the low or the high bid depending on the bid chosen by firm j when playing its

mixed strategy. In particular, firm i’s incentives to bid low are now stronger as compared

to those in the withholding case, given that by reducing its price offer it can outbid

the rival for a larger range of capacity realizations, including kj > θ. The equilibrium

randomization is governed by the density function f(b) as displayed in the rotated graph

inside the figure.

The previous equilibrium bidding function is not monotonic in ki, particularly around

θ. The optimal bid converges to c to the left of θ as the firm is certain to be selling at

capacity at the price set by the rival. In contrast, the bid jumps above c when ki > θ, as

the firm is aware that its bid is always payoff relevant.

Allowing k to increase above θ shows how the equilibrium bid schedules approach the

competitive outcome. Suppose that capacities were uniformly distributed in
[
k, k
]
, and

consider moving the whole capacity support to the right. For capacity realizations above

θ, the equilibrium mixed strategy would put increasingly more weight on the lower bound

of the price support, which converges towards c. In turn, the range
(
k̂, k̃
)

would widen

up. This process would continue until k reached θ, in which case the equilibrium bid

functions would become flat at marginal costs. Figure 7 provides an example depicting

this process of convergence towards the competitive outcome.

We can now assess the effect on consumers of banning capacity withholding comparing

the equilibria characterized in Propositions 2 and 7. There are two forces operating in

opposite directions. On the one hand, for ki > θ, capacity withholding yields lower bids

as firms offer to produce θ at marginal cost. On the other hand, for ki ≤ θ, firms’ bids

are weakly lower without capacity withholding, and strictly so for capacity realizations

in the range
(
k̂, k̃
)

. Numerical results like those illustrated in Figure 8 suggest that the

30



0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

ki

b i
(k
i)

0 0.1 0.2 0.3 0.4 0.5

b

f
(b

)

Figure 7: Equilibrium bids and probability density when ki ∼ U [0.5, 1.1] (dotted),
ki ∼ U [0.6, 1.2] (dashed) and ki ∼ U [0.7, 1.3] (solid), with θ = 1, c = 0, and P = 0.5.

Note: The figure shows the equilibrium price offers (left panel) and price distributions (right panel). As
κ increases, the price offers move downwards, while the densities put more weight on lower prices.

first effect dominates. In particular, when capacities are uniformly distributed, banning

capacity withholding gives rise to higher expected prices.

6 Concluding Remarks

In this paper we have analyzed equilibrium bidding in multi-unit auctions when bid-

ders’ production capacities are private information. We have allowed changes in capacity

to shape the bidding functions, both through changes in the prices and the quantities

offered by firms. This is unlike other papers in the literature which typically assume

that the private information is on costs (or bidders’ valuations) and which, with few

exceptions, do not allow bidders to act on both the price and quantity dimensions.

From a broad economic perspective, we have shown that the nature of private infor-

mation and the strategies available to firms have a key impact on equilibrium behavior.

As compared to cost shocks, equilibrium prices are more elastic to capacity shocks. The

reason is two-fold: firms’ price offers tend to be steeper in their private information, and

firms find it optimal to offer more output at lower prices when they receive a positive
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Figure 8: Equilibrium prices for k = 0.5 and k > 1 when withholding is possible (solid
line) or not allowed (dashed line)

Note: This figure depicts the expected market price as a function of k under the assumptions θ = 1,
c = 0, and P = 0.5, and ki ∼ U [k, k], for k = 0.5 and k ∈ [1.05, 1.4]. It shows that expected market
prices are lower when capacity withholding is allowed.

capacity shock. We have also shown that firms tend to exercise less market power the

greater the capacity uncertainty. As a consequence, under private information on capac-

ities, firms can obtain higher profits than when capacities are unknown, but less than

when capacities are common knowledge.

Even though our model applies to a range of auction settings in which bidders pos-

sess private information about their capacities, our work was motivated in the context

of electricity markets. Understanding competition among renewables is of first order

importance to guide policy making in this area.

In this regard, our paper provides some key lessons about the future performance

of electricity markets if their design remains barely unchanged. First, our equilibrium

characterization demonstrates that renewables will not in general make electricity mar-

kets immune to market power. Rather, firms will keep on exercising market power either

by raising their bids or by withholding their output. The fact that the price offers are

decreasing in firms’ capacities implies that mark-ups will be lower at times of more avail-

able capacity, leading to price dispersion both within as well as across days, depending

on weather conditions.

Renewables introduce a trade-off between price levels and price volatility. As we have

shown, renewables tend to mitigate market power as compared to conventional technolo-
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gies, as the former have unknown capacities while the capacities of the latter are known.

However, to the extent that the marginal costs of fossil-fuels are less uncertain than the

availability of renewables, market prices will also tend to be more volatile. The preva-

lence of positive mark-ups implies that the price-depressing effects of renewables will not

be as pronounced as predicted under the assumption of perfect competition. Renewables

will have a stronger price depressing effect in the long-run as installed renewable capacity

goes up. The reduction in expected prices as a function of total investment will not be

linear, but it will rather be smoother at the late stages of the energy transition.

Our model predicts that differences across renewable technologies (e.g. solar versus

wind) will give rise to different market power impacts. For instance, solar will give rise to

less market power than wind, to the extent that solar forecasts are typically less precise.

Introducing correlation between demand and the expected availability of each technology

would also highlight differences across technologies as, in contrast to solar power, wind

would tend to depress prices when demand is low but would have little effect on prices

when demand is high. Competition among renewables could also be affected by portfolio

effects, as firms typically own a variety of technologies whose joint distribution will affect

firms’ optimal bidding strategies. In sum, future electricity markets would depict large

price differences across the day and across the year, reflecting differences in weather

conditions and the associated differences in firms’ ability to charge positive mark-ups. As

compared to conventional technologies, renewables help mitigate market power.

The aim of this paper has not been to identify the optimal design of future electricity

markets, but rather to analyze their future performance if the current mechanisms re-

main unchanged. It has shown that deploying renewables without further market design

changes will not be enough to achieve efficient outcomes. Regulators will have to rely on

other instruments or other market designs if they aim at fully eliminating market power.

Notably, our analysis has taken capacities as given. An issue that deserves further

research is whether the current mechanisms will induce the desired investments. This

paper has provided a first step in this highly policy relevant research agenda.
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A Proofs

Proof of Lemma 1: For part (i) of the lemma, suppose that firm j chooses a bid

according to a distribution Fj(bj, qj|kj). Profits for firm i can be written as

πi(bi, qi, Fj|ki) =

∫
(b,q≥k)

[(b− c)qi Pr(bi ≤ b)

+ (bi − c)(θ − q) Pr(bi > b)] dFj(b, q|kj)g(kj)dkj.

The above equation is increasing in qi, indicating that the firm maximizes profits by

choosing q∗i (ki) = ki. In what follows we simplify the notation by eliminating qi from the

profit function πi and by indicating that the randomization is only over prices, Fi(bi|ki).

For part (ii), consider, towards a contradiction, two bids bi and b′i > bi for which firm

i randomizes. Then, it must be that firm i is indifferent between both and, thus,

πi(b
′
i, Fj|ki)− πi(bi, Fj|ki) =

∫ k

k

∫
b

{(b− c)ki [Pr(b′i ≤ b)− Pr(bi ≤ b)] (4)

+(θ − kj) [(b′i − c) Pr(b′i > b)− (bi − c) Pr(bi > b)]} dFj(b|kj)g(kj)dkj = 0.

Since j cannot condition the strategy on ki, then Fj(bj|kj) must be such that the previous

expression holds for all ki. Hence, either bj(kj) = c for all kj, in which case Fj(bj|kj) would

be a degenerate mixed strategy, or∫
kj

∫
b

[Pr(b′i ≤ b)− Pr(bi ≤ b)] dFj(b|kj)g(kj)dkj = 0.

By Bertrand arguments, Fj cannot contain gaps in the support and, therefore, this cannot

occur. Given that the second part of equation (4) does not depend on ki this leads to a

contradiction.

Regarding part (iii) of the lemma, using the previous result we can focus on firm j

choosing a pure strategy. As a result, it is enough to show that the function πi(bi, bj|ki)

has non-increasing differences in bi and kj. Using the previous expression and taking the

derivative with respect to ki we have

∂ [πi(b
′
i, bj|ki)− πi(bi, bj|ki)]

∂ki
=∫ k

k

(bj(kj)− c)ki [Pr(b′i < bj(kj))− Pr(bi < bj(kj))] g(kj)dkj ≤ 0.

In words, larger firms gain (weakly) less from increasing their bids. Hence, the optimal

bid function is non-increasing in ki.
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Proof of Proposition 1: See Fabra et al. (2006).

Proof of Proposition 2: Expected profits can be written as

πi (bi, bj|ki) =

∫ b−1
j (bi)

k

(bj(kj)− c)kig(kj)dkj

+

∫ k

b−1
j (bi)

(bi − c)(θ − kj)g(kj)dkj, (5)

and the first-order condition that characterizes the optimal bid of firm i can be written

as

∂πi
∂bi

= b−1′
j (bi)g(b−1

j (bi))(bi − c)(ki + b−1
j (bi)− θ) +

∫ k

b−1
j (bi)

(θ − kj)g(kj)dkj = 0. (6)

Under symmetry, bj(k) = bi(k). Accordingly, we can rewrite the expression as

1

b′i(ki)
g(ki)(bi(ki)− c)(2ki − θ) +

∫ k

ki

(θ − kj)g(kj)dkj = 0. (7)

The first term of the first order condition (7) is negative and the second term is positive,

taking the form

b′i(ki) + a(ki)bi(ki) = ca(ki),

where

a(k) =
(2k − θ)g(k)∫ k

k
(θ − kj)g(kj)dkj

· (8)

If we multiply both sides by e
∫ k
k a(s)ds and integrate from k to ki we obtain∫ ki

k

(
e
∫ k
k a(s)dsb′i(k) + a(k)e

∫ k
k a(s)dsbi(k)

)
dki = c

∫ ki

k

a(ki)e
∫ k
k a(s)dsdki.

We can now evaluate the integral as

e
∫ k
k a(k)dkbi(k)

]ki
k

= ce
∫ k
k a(s)ds

]ki
k
.

This results in

e
∫ ki
k a(k)dkbi(ki)− bi(k) = ce

∫ ki
k a(k)dk − c.

Solving for bi(ki) we obtain

bi(ki) = c+ Ae−
∫ ki
k a(k)dk = c+ Ae−ω(ki),

where A ≡ bi(k)− c and ω (ki) ≡
∫ ki
k
a(k)dk.

38



A necessary condition for an equilibrium is that the resulting profits are at or above

the minimax, which the firm can obtain by bidding at P . Hence, a necessary condition

for equilibrium existence is that

πi (bi, bj|ki) ≥
∫ k

k

(P − c)(θ − kj)g(kj)dkj. (9)

Hence, to rule out deviations to P , we now need to prove that minimax profits increase

less in ki as compared to equilibrium profits. The derivative of the minimax is

(P − c) (G (θ − ki)− g (θ − ki) ki) .

The derivative of profits is ∫ b−1
j (bi)

k

(bj(kj)− c)kig(kj)dkj.

This derivative is greater than that of the minimax.

It follows that deviations to P are not profitable since equilibrium profits are always

strictly greater than the minimax, except for ki = k when equilibrium profits are exactly

equal to the minimax.

Finally, we need to verify that the candidate equilibrium, indeed, maximizes profits

for each of the firms. From the first order condition in (6) we can compute the second

derivative of the profit function of firm i, when firm j uses a bidding function bj(kj) as

g(b−1
j (bi))

b′j (kj)

(
−

b′′j (kj)(
b′j (kj)

)2 (bi − c)(ki + b−1
j (bi)− θ) +

1

b′j (kj)

g′(b−1
j (bi))

g(b−1
j (bi))

(bi − c)(ki + b−1
j (bi)− θ)

+(ki + b−1
j (bi)− θ) +

1

b′j (kj)
(bi − c)− (θ − b−1

j (bi))

)
.

Once we substitute the candidate equilibrium bi(k) = bj(k) the previous expression be-

comes
∂2πi

∂2bi(ki)
=

g(ki)

b∗′ (ki)

1

a (ki)
< 0.

Because there is a unique solution to the first order condition, this implies that the

profit function is quasiconcave and guarantees the existence of the equilibrium. In par-

ticular, this rules out deviations where firms choose any lower bid, including c.

Proof of Proposition 3: We first show that, for ki ≥ θ and any price offer bi,

quantity qi > θ is dominated by offering qi = θ. If the firm offers qi = θ, its expected

profits are

πi(bi, bj(kj)|qi = θ) =

∫ b−1
j (bi)

k

(bj(kj)− c)θg(kj)dkj +

∫ k

b−1
j (bi)

(bi− c)(θ−kj)g(kj)dkj. (10)
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Instead, if the firm offers qi > θ, its expected profits are

πi(bi, bj(kj)|qi > θ) =

∫ b−1
j (bi)

k

(bi − c)θg(kj)dkj +

∫ k

b−1
j (bi)

(bi − c)(θ − kj)g(kj)dkj.

The inspection of the above equation in comparison with (10), shows that offering qi > θ

is dominated by qi = θ: the second term is the same as in equation (10), while the first

term is now smaller since, over this range, bj(kj) > bi. Given the optimality of qi = θ, the

problem is the same as the one solved in Propositions 1 and 2, with G(ki) now adjusted

to G(q∗i (ki)), i = 1, 2.

Proof of Lemma 2: See Fabra et al. (2006). Unlike their paper, the fact that ca-

pacities are random and observable allows to symmetrize the equilibrium through perfect

correlation between the two asymmetric pure strategy equilibria.

Proof of Lemma 3: See Fabra et al. (2006). The proof is analogous to the case in

which demand is uncertain (long-lived bids).

Proof of Proposition 4: It follows from the proofs of Lemmas 2 and 3.

Proof of Proposition 5: We show that there is no profitable deviation from the

candidate equilibrium stated in the text of the proposition.

Regarding part (i), the same logic as in Proposition 1 applies.

For part (ii), let’s start by focusing on ki ∈ [k1, k2]. It is easy to see that a counterpart

of Lemma 1 applies in this case. As a result, the profit function of both firms can be

written as

πi(bi, bj(kj)) = (P − c)kiGi(k1) +

∫ b−1
j (bi)

k1

(bj(kj)− c)kigj(kj)dkj

+

∫ k2

b−1
j (bi)

(bi − c)(θ − kj)gj(kj)dkj.

Under the assumption that gi(ki) is uniformly distributed in an interval of the same

length, we have gi(ki) = gj(kj) for ki ∈ [ki, ki] and i = 1, 2. As a result, the profit

function of the two firms is identical because the bid function in this range is the same.

Hence, the first condition is also the same and it coincides with equation (7) in the proof

of Proposition 1, leading to expression (3).

It remains to show that (1) b2(k2) = P for k2 < k1 and (2) b1(k1) = c when k1 > k2.

Regarding (1), by definition of equilibrium we have that π2(k1, P ) ≥ π2(k1, b) for b < P .
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Since firm 2 can always satisfy the residual demand, we also have that for k2 < k1, the

firm makes the same level of profits, π2(k1, P ) = π2(k2, P ). In turn, since profits are

always increasing in capacity, we also have that for any b < P , π2(k1, b) > π2(k2, b). This

shows that (1) is optimal.

With respect to (2), by definition of equilibrium we have that π1(k2, c) ≥ π1(k2, b) for

any b > c. Furthermore, for all k1 ≥ k2, profits increase faster with capacity when the

firm bids at c than when it bid at any b > c, ∂π1
∂k1

(k1, c) >
∂π1
∂k1

(k1, b). This shows that (2)

is optimal.

Proof of Proposition 6: Profits for firm i are:

πi(bi, bj|ki) =

∫ b−1
j (bi)

k

(bj(kj)− c)kiϕ(kj)dkj

+

∫ k

b−1
j (bi)

(bi − c)

(
θ − kj −

∫ k

kj

(N − 2) kg(k)dk

)
ϕ(kj)dkj

The first-order condition that characterizes the optimal bid of firm i can be written as

∂πi
∂bi(ki)

= b−1′
j (bi)ϕ(b−1

j (bi))(bi − c)

(
kj +

∫ k

kj

(N − 2) kg(k)dk + b−1
j (bi)− θ

)

+

∫ k

b−1
j (bi)

(
θ − kj −

∫ k

kj

(N − 2) kg(k)dk

)
ϕ(kj)dkj = 0.

Under symmetry, bj(k) = bi(k), we can rewrite the expression as

∂πi
∂bi(ki)

=
1

b′i(ki)
ϕ(ki)(bi(ki)− c)

(
2ki +

∫ k

ki

(N − 2) kg(k)dk − θ

)

+

∫ k

ki

(
θ − kj −

∫ k

kj

(N − 2) kg(k)dk

)
ϕ(kj)dkj = 0

Reorganizing it,

b′i(ki) + bi(ki)a(ki) = ca(ki)

where a(ki) does not depend on bi,

a(ki) =

(
2ki +

∫ k
ki

(N − 2) kg(k)dk − θ
)
ϕ(ki)∫ k

ki

(
θ − kj −

∫ k
kj

(N − 2) kg(k)dk
)
ϕ(kj)dkj

·

Hence, the solution is the same as above:

b∗i (ki) = c+ (P − c) e−ω(ki)

41



where ω (ki) ≡
∫ ki
k
a(k)dk.

Proof of Lemma 4: We first prove the non-existence of a pure-strategy equilibrium

when ki ≥ θ. By way of contradiction, assume that there exists one. Following the same

steps as in the proof of Lemma 1, it is easy to show that it must be non-increasing in ki.

Suppose, therefore, that bj is non-increasing in kj. As a result, the optimal bid for firm

i can be characterized as bi ∈ arg maxbi πi(bi, bj(kj)|ki).

If bi > bj (θ) , expected profits are

πi(bi, bj(kj)|ki) = (bi − c)

(∫ b−1
j (bi)

k

θg(kj)dkj +

∫ θ

b−1
j (bi)

(θ − kj)g(kj)dkj

)
.

Instead, if bi ≤ bj (θ) ,

πi(bi, bj(kj)|ki) = (bi − c)
∫ b−1

j (bi)

k

θg(kj)dkj.

In both cases, profit functions do not depend on ki. Therefore, the optimal bid is the

same for all ki ≥ θ. Thus, at the candidate pure strategy equilibrium, b∗ (ki) = b∗ (θ) for

all ki ≥ θ.

However, this is ruled out by standard Bertrand-Edgeworth arguments. First, if

b∗ (θ) > c, firm i would have incentives to slightly undercut b∗ (θ). If kj ≥ θ, this would

allow firm i to serve total demand, rather than a share of it, at only a slightly lower

price, with almost no effect on firm i’s profits if kj < θ. Second, if b∗ (θ) = c, the market

price would always be c. Hence, firm i would make zero profits regardless of kj and would

rather deviate to P in order to make positive profits over the expected residual demand.

It follows that the equilibrium must involve mixed strategies. Standard arguments imply

that firms choose prices in a compact support
[
b, b̄
]
.

Proof of Proposition 7: A symmetric Bayesian Nash Equilibrium must have the

following properties. First, using the same arguments in Proposition 2, the optimal bid

must be strictly decreasing in ki for ki < θ. Second, from Lemma 4 it must involve a

mixed strategy when ki ≥ θ.

To make things simpler, we first assume b̄ ≤ b (k) and b ≥ b (θ) . At the end of the

proof we will show that this assumption must hold in equilibrium. We define k̃ = b−1
j (b̄)

and k̂ = b−1
j (b). Since bj (kj) is decreasing, it follows that

[
k̃, k̂
]
⊆ [k, θ] . We consider

four capacity regions:

42



Region I. If ki ∈
[
k, k̃
]
, expected profits are

πi(bi, bj(kj)|ki) =

∫ b−1
j (bi)

k

(bj(kj)− c)kig(kj)dkj +

∫ θ

b−1
j (bi)

(bi − c)(θ − kj)g(kj)dkj

Firm i has the low bid when kj < b−1
j (bi) and, hence sells up to capacity at the price

set by firm j. Otherwise, either it sells the residual demand and sets the price or, if kj > θ

the rival will serve all the market.

Taking derivatives, we obtain a similar First Order Condition as in equation (7),

with the only difference that k is replaced by θ. Hence, the solution is the same as in

Proposition 2, with the only difference that k is replaced by θ in equation (8). Hence,

the optimal bid in this region is

b∗(ki) = c+ (P − c) e−ω(ki), (11)

where ω (ki) ≡
∫ ki
k
a(k)dk, and

a(k) =
(2k − θ)g(k)∫ θ

k
(θ − kj)g(kj)dkj

· (12)

Using the optimal bid in (11), for given b̄, k̃ is implicitly defined by

b∗
(
k̃
)

= b̄.

Region II. If ki ∈
[
k̃, k̂
]
, expected profits are

πi(bi, bj(kj)|ki) =

∫ b−1
j (bi)

k

(bj(kj)− c)kig(kj)dkj +

∫ θ

b−1
j (bi)

(bi − c)(θ − kj)g(kj)dkj

+ (1−G (θ))

∫ b̄

bi

(bj − c)kifj (bj) dbj.

The profit expression now adds a third term as the firm will serve all its capacity at the

price set by the rival whenever kj ≥ θ and bi < bj.

The first-order condition that characterizes the optimal bid of firm i can be written

as

1

b′j(kj)
g(b−1

j (bi))(bi−c)(ki+b−1
j (bi)−θ)+

∫ θ

b−1
j (bi)

(θ−kj)g(kj)dkj−(1−G (θ)) (bi−c)kifj (bi) = 0.
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This expression is similar to equation (7), where k replaces θ, plus an additional third

term, which is negative. If follows that the optimal bid that solves the above equation is

lower than the optimal bid in the baseline case.

Using symmetry, the optimal bid is the solution to(
1− (1−G (θ)) (b(k)− c)kf (b(k))

(2k − θ)g(k)
a(k)

)
b′(k) + a(k)b(k) = ca(k),

where a(k) is defined as in equation (12). Note that if G (θ) = 1 we would obtain the

same solution as in the baseline case. Since we now have G (θ) < 1, the solution is lower.

Region III. If ki ∈
[
k̂, θ
]
, expected profits are

πi(bi, bj(kj)|ki) =

∫ b−1
j (bi)

k

(bj(kj)− c)kig(kj)dkj +

∫ θ

b−1
j (bi)

(bi − c)(θ − kj)g(kj)dkj

+ (1−G (θ))

∫ b̄

b

(bj − c)kifj (bj) dbj.

The first-order condition that characterizes the optimal bid of firm i is the same as

in Region I as the last term does not depend on bi. Hence, the solution is also given by

expressions (11) and (12). Hence, (11), for given b, k̂ is implicitly defined by b∗(k̂, k, θ) = b.

Region IV. Last, consider ki ∈
[
θ, k
]
. Expected profits are given by,

πi(bi, bj(kj)|ki) =(bi − c)

(∫ b−1
j (bi)

k

θg(kj)dkj

+

∫ θ

b−1
j (bi)

(θ − kj)g(kj)dkj + (1− Fj (bi)) (1−G (θ)) θ

)
(13)

As argued above, this profit function does not depend on ki, so the optimal bid must be

constant in ki.

At the upper bound of the support, Fj
(
b̄
)

= 1. Hence, b̄ maximizes

πi(b̄, bj|ki) = (b̄− c)

(∫ b−1
j (b̄)

k

θg(kj)dkj +

∫ θ

b−1
j (b̄)

(θ − kj)g(kj)dkj

)

= (b∗
(
k̃
)
− c)

(
θG (θ)−

∫ θ

k̃

kjg(kj)dkj

)
Taking derivatives with respect to b̄,

θG (θ)−
∫ θ

b−1
j (b̄)

kjg(kj)dkj + (b̄− c) 1

b′j(kj)
g(b−1

j (b̄))b−1
j (b̄) = 0
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Using the definition of k̃ above, it can be re-written as

θG (θ)−
∫ θ

k̃

kjg(kj)dkj + (b̄− c) 1

b∗′j (k̃)
g(k̃)k̃ = 0.

From the analysis of the case with small installed capacities we know that

b′i(ki) + a(ki)bi(ki) = ca(ki)

so that

b′j(kj) = − (bi(ki)− c) a(ki)

Hence,

θG (θ)−
∫ θ

k̃

kjg(kj)dkj − (b̄− c) 1(
b∗(k̃)− c

)
a(k̃)

g(k̃)k̃

Since b∗(k̃) = b̄,

θG (θ)−
∫ θ

k̃

kjg(kj)dkj −
g(k̃)k̃

a(k̃)
= 0

Using the expression for a(k) in equation (12),

θG
(
k̃
)
− θ − k̃

2k̃ − θ

∫ θ

k̃

(θ − kj) g(kj)dkj = 0,

which defines k̃. Note that we must have an interior solution, k̃ ∈ (k, θ). For k̃ = k, the

first term is zero so the left hand side would be negative; whereas for k̃ = θ, the second

term is zero so the left hand side would be positive.

At the lower bound of the support, Fj (b) = 1. Expected profits are

πi(b, bk|ki) = (b− c)

(
θ −

∫ θ

b−1
j (b)

kjg(kj)dkj

)

= (b
(
k̂
)
− c)

(
θ −

∫ θ

k̂

kjg(kj)dkj

)
Since the firm must be indifferent between all the prices in the support, profits at the

lower and upper bounds must be equal,

(b̄− c)

(
θG (θ)−

∫ θ

b−1
j (b̄)

kjg(kj)dkj

)
= (b− c)

(
θ −

∫ θ

b−1
j (b)

kjg(kj)dkj

)
= π∗

Using the definitions for b̄ and b,

(b∗
(
k̃
)
− c)

(
θG (θ)−

∫ θ

k̃

kjg(kj)dkj

)
= (b∗

(
k̂
)
− c)

(
θ −

∫ θ

k̂

kjg(kj)dkj

)
= π∗
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which defines k̂. Hence, equilibrium profits are well defined π and we can treat them like

a constant.

By the above equality, when k is just above θ, k̃ is arbitrarily close to k̂. Instead,

when k is so large that G (θ) = 0, then b
(
k̂
)

= c.

Now, we can use the above expression for equilibrium profits to solve for F (b) in

equation (13),

F (b) =
1

(1−G (θ)) θ

(
θ −

∫ θ

b∗−1(b)

kg(k)dk − π∗

(b− c)

)
where b∗(k) is defined above by expressions (11) and (12).

Computing the density,

f (b) =
1

(1−G (θ)) θ

(
π∗

(b− c)2
+

k

b∗′(k)
g(k)

)
.

46


	Introduction
	The Model
	Interpreting the Model

	Equilibrium Characterization
	Small Installed Capacities
	Large Installed Capacities
	Implications for Market Performance

	What is the impact of private information?
	Extensions and Variations
	Asymmetric Firms
	N Firms
	Capacity Withholding is not Allowed

	Concluding Remarks
	Proofs

